-
ABC, 10.8
- Anaconda, 0.3
- Approximate Bayesian Computation, 10.8
- Axtell, Robert, 3.4
- abstract type, 2.7, 6.4
- arrival rate, 8.5
- Bayes factor, 5.3, 11.1, 11.2, 11.3, 12.4
- Bayes’s theorem, 1.3
-
derivation, 1.4
- odds form, 5.2
- Bayesian framework, 2.3
- Behavioral Risk Factor Surveillance System, 10.1
- Bernoulli process, 7.2
- Beta object, 4.5, 15.9
- Boston, 8.1
- Boston Bruins, 7.1
- BRFSS, 10.1, 10.8
- bacteria, 15.1
- belly button, 15.1
- beta distribution, 4.5, 15.2, 15.2
- biased coin, 11.1
- binomial coefficient, 15.6
- binomial distribution, 12.3, 14.1, 14.2
- binomial likelihood function, 4.5
- biodiversity, 15.1
- bogus, 10.3, 11.1
- bucket, 13.5
- bus stop problem, 7.8, 7.8
- Campbell-Ricketts, Tom, 14.1
- CDC, 10.1
- Cdf, 3.6, 5.7, 6.5, 8.3, 15.10
- Centers for Disease Control, 10.1
- College Board, 12.2
- Cromwell’s rule, 4.6
- Cromwell, Oliver, 4.6
- cache, 10.7, 13.4
- calibration, 12.6
- carcinoma, 13.3
- causation, 14.1, 14.6
- central credible interval, 9.7
- classical estimation, 10.2
- clone, 0.3
- coefficient of variation, 10.1
- coin toss, 1.1
- collectively exhaustive, 1.5
- complementary CDF, 15.12
- concrete type, 2.7, 6.4
- conditional distribution, 9.6, 9.8, 13.3, 13.6, 13.8, 15.11
- conditional probability, 1.1
- conjoint probability, 1.2
- conjugate prior, 4.5
- conjunction, 1.4
- continuous distribution, 4.5
- contributors, 0.5
- convergence, 4.3, 4.6
- cookie problem, 1.3, 2.2, 5.2
- cookie.py, 2.2
- correlated random value, 13.7
- coverage, 15.12, 15.12
- crank science, 10.1
- credible interval, 3.5, 9.5
- cumulative distribution function, 3.6, 8.3
- cumulative probability, 13.7, 15.10
- cumulative sum, 15.6
- Davidson-Pilon, Cameron, 6.1
- Dice problem, 3.1
- Dirichlet distribution, 15.2, 15.10
- Dungeons and Dragons, 3.1, 5.4
- decision analysis, 6.1, 6.8, 6.9, 8.7
- degree of belief, 1.1
- density, 6.3, 6.4, 6.6, 10.2
- dependence, 1.2, 9.6, 9.6
- diachronic interpretation, 1.5
- dice, 2.1, 3.1
- dice problem, 3.2
- distribution, 2.1, 5.7, 6.9
- divide-and-conquer, 1.8
- doubling time, 13.1
- ESP, 11.5
- Euro problem, 4.1, 4.6, 10.8, 11.1
- efficacy, 12.5
- enumeration, 5.4, 5.5
- error, 6.5
- evidence, 1.4, 4.2, 5.3, 5.3, 9.5, 10.1, 11.1, 11.1, 11.2, 11.3, 11.4, 12.1
- exception, 10.5
- exponential distribution, 7.2, 7.6, 13.1
- exponentiation, 5.5
- extra-sensory perception, 11.5
- fair coin, 11.1
- fork, 0.3
- forward problem, 14.1
- Gaussian distribution, 6.3, 6.4, 6.4, 6.5, 7.1, 10.2, 10.8, 10.9, 12.3, 12.5, 12.6, 13.7
- Gaussian PDF, 6.4
- Gee, Steve, 6.2
- Geiger counter problem, 14.1, 14.6
- German tank problem, 3.2, 3.8
- Git, 0.3
- GitHub, 0.3
- gamma distribution, 15.4, 15.6
- generator, 13.7, 13.7, 15.10
- growth rate, 13.7
- Heuer, Andreas, 7.2
- Hoag, Dirk, 7.7
- Horsford, Eben Norton, 10.1
- Hume, David, 11.5
- heart attack, 1.1
- height, 10.1
- hierarchical model, 14.3, 14.6, 15.3
- hockey, 7.1
- horse racing, 5.1
- hypothesis testing, 11.1
- IQR, 10.9
- implementation, 2.7, 6.4
- independence, 1.2, 1.6, 5.4, 5.5, 9.6, 9.6, 12.9, 13.3, 15.2
- informative prior, 3.8
- insect sampling problem, 7.8
- installation, 0.3
- inter-quartile range, 10.9
- interface, 2.7, 6.4
- intuition, 1.7
- inverse problem, 14.1
- item response theory, 12.5
- iterative modeling, 7.7
- iterator, 13.4
- Jaynes, E. T., 14.1
- Joint, 9.5, 9.6, 9.7, 9.8, 10.2
- Joint object, 15.11
- Joint pmf, 9.2
- joint distribution, 9.5, 9.8, 10.2, 12.9, 13.5, 13.6, 13.8, 15.2, 15.10, 15.11
- KDE, 6.2, 6.4
- Kidney tumor problem, 13.1
- kernel density estimation, 6.2, 6.4
- Likelihood, 2.3
- least squares fit, 13.6
| - light bulb problem, 7.8
- likelihood, 1.5, 6.5, 6.6, 6.6, 8.4, 9.3, 9.4, 10.2, 10.11, 11.2, 14.2
- likelihood function, 3.2
- likelihood ratio, 5.3, 11.2, 11.3, 12.4
- linspace, 10.2
- lions and tigers and bears, 15.2
- locomotive problem, 3.2, 3.8, 10.8
- log scale, 13.5
- log transform, 10.5
- log-likelihood, 10.6, 15.6, 15.6
- logarithm, 10.5
- M and M problem, 1.6, 2.6
- MacKay, David, 4.1, 5.3, 8.9, 11.1
- MakeMixture, 7.4, 7.6, 8.3, 8.6, 12.5, 15.9
- Meckel, Johann, 10.1
- Monty Hall problem, 1.7, 2.4
- Mosteller, Frederick, 3.2
- Mult, 2.2
- marginal distribution, 9.5, 9.8, 15.2
- matplotlib, 0.3
- maximum, 5.5
- maximum likelihood, 3.5, 4.2, 6.9, 9.7, 10.3, 10.5, 15.2
- mean squared error, 3.2
- median, 4.2
- memoization, 10.7
- meta-Pmf, 7.4, 7.6, 8.3, 8.6, 12.5, 15.9
- meta-Suite, 14.3, 15.3
- microbiome, 15.1
- mixture, 5.6, 7.4, 7.4, 7.6, 8.3, 8.6, 8.6, 13.1, 15.9
- modeling, 0.2, 3.8, 4.6, 7.7, 10.11, 12.1, 13.2, 13.3
- modeling error, 12.5, 13.7, 13.7
- multinomial coefficient, 15.3
- multinomial distribution, 15.2, 15.3, 15.6
- mutually exclusive, 1.5
- National Hockey League, 7.1
- NHL, 7.1
- NumPy, 0.3
- navel, 15.1
- non-linear, 8.6
- normal distribution, 6.4
- normalize, 6.7
- normalizing constant, 1.5, 1.6, 5.2, 14.4
- nuisance parameter, 12.9
- numpy, 6.4, 6.4, 6.5, 6.8, 7.1, 8.5, 10.2, 12.6, 15.2, 15.4, 15.5, 15.6, 15.6, 15.6, 15.7, 15.8, 15.8, 15.10
- Olin College, 8.1
- Oliver’s blood problem, 5.3
- OTU, 15.9
- objectivity, 3.8
- observer bias, 8.2, 8.7
- odds, 5.1
- operational taxonomic unit, 15.9
- optimization, 4.4, 10.7, 10.7, 14.4, 15.5
- overtime, 7.5
- Paintball problem, 9.1
- PDF, 4.5, 7.1
- Pdf, 6.3, 6.4
- PEP 8, 0.4
- Pmf, 5.7, 6.3
- Pmf class, 2.1
- Pmf methods, 2.1
- Poisson distribution, 7.2, 7.4, 7.4, 8.4, 14.2
- Poisson process, 0.2, 7.1, 7.2, 7.6, 7.8, 8.2, 14.1
- Price is Right, 6.1
- Prob, 2.1
- parameter, 4.5
- percentile, 3.5, 13.6, 13.7
- posterior, 1.5
- posterior distribution, 2.2, 4.2
- power law, 3.4
- predictive distribution, 7.8, 8.4, 8.4, 8.6, 12.8, 15.10
- prevalence, 15.1, 15.3, 15.9
- prior, 1.5
- prior distribution, 2.2, 3.3
- probability, 6.3
-
conditional, 1.1
- conjoint, 1.2
- probability density, 6.3
- probability density function, 4.5, 6.3, 7.1
- probability mass function, 2.1
- process, 7.2
- pseudocolor plot, 13.5
- pyrosequencing, 15.1
- Red Line problem, 8.1
- Reddit, 4.7, 13.1
- radioactive decay, 14.1
- random sample, 15.4, 15.10
- rarefaction curve, 15.10, 15.11
- raw score, 12.3
- rDNA, 15.1
- regression testing, 0.2, 15.6, 15.7
- renormalize, 2.2
- repository, 0.3
- robust estimation, 10.9
- SAT, 12.1
- SciPy, 0.3
- Showcase, 6.1
- Sivia, D.S., 9.1
- Suite class, 2.5
- sample bias, 15.9
- sample statistics, 10.8
- scaled score, 12.2
- scipy, 6.4, 6.4, 10.6
- serial correlation, 13.7, 13.7
- simulation, 5.4, 5.5, 5.6, 13.3, 13.4, 15.10
- species, 15.1, 15.9
- sphere, 13.3, 13.7
- standardized test, 12.1
- stick, 1.7
- strafing speed, 9.3
- subjective prior, 1.5
- subjectivity, 3.8
- sudden death, 7.5
- suite, 1.5
- summary statistic, 6.9, 10.9, 10.11
- swamping the priors, 4.3, 4.6
- switch, 1.7
- table method, 1.6
- template method pattern, 2.7
- total probability, 1.5
- triangle distribution, 4.3, 11.3
- trigonometry, 9.3
- tumor type, 13.7
- tuple, 4.4
- Unseen Species problem, 15.1
- Update, 2.3
- uncertainty, 8.6
- underflow, 10.5, 15.6
- uniform
distribution, 15.4
- uniform distribution, 4.1, 5.6, 8.3
- uninformative prior, 3.8
- Vancouver Canucks, 7.1
- Variability Hypothesis, 10.1
- Veterans’ Benefit Administration, 13.2
- volume, 13.3
- Weibull distribution, 7.8
- word frequency, 2.1
|