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Preface

History
I started using Python in July 2010. I was looking for a programming language which is open
source, and can combine many codes/modules/software. I came across Python and Perl, though
there might be many more options available. I googled the use of Python and Perl in the field of
general scientific usage, hydrology, Geographic Information System (GIS), statistics, and somehow
found Python to be the language of my need. I do not know if my conclusions about the Python
versus Perl were true or not? But I feel happy for Python being my choice, and it is fulfilling my
requirements.

After using Python for two-three months, I become fond of open source, and started using only
open source software, I said good-bye to Windows, ArcGis, MATLAB. And even after one year, I
do not miss them. I felt that I should also make a small contribution into the free world. I tried to
contribute in few areas, but could not go ahead because of my less knowledge in those areas. After
spending extensive one year with Python, I thought to make some contribution into Python world. I
wrote few small packages for the Python, and started writing this book.

I always have been scared of reading books, especially those having more than 200 pages. I do not
remember if I have read any book completely which had more than 200 pages. Though the list of
books, that I have read is very small, even for the books which had pages less than 200. I do not
like much of the text in the book, and like to learn from examples in the book. I am a student, not
a professor, so does not have idea about what students like except my own feeling which I know
many of my fellow students do not like.

I hope that you will find this book helpful and enjoyable.

Sat Kumar Tomer
Bangalore, India

Sat Kumar Tomer is a Phd Student in the department of civil engineering at Indian Institute of
Science, Bangalore, India.
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Chapter 1

Getting started

1.1 Why Python?

Python is a simple and powerful programming language. By simple I mean, that it is much more
forgiving than languages like C though slow also. By powerful, I mean it can glue many existing
code which were written in C, C++, Fortran etc. easily. This has a growing user community which
makes many tools easily available. Python Package Index which is a major host of the Python code,
has more than 15,000 packages listed, which speaks about it popularity. Use of Python in hydrol-
ogy community is not so fast as compared to other field, but now a days many new hydrological
packages are being developed. Python provides access to a nice combination of GIS tools, Mathe-
matics, Statistics etc., which make it a useful language for the hydrologist. Following are the major
advantages of Python for the hydrologist:

1. A clear and readable syntax.

2. Modules can be easily written in C, C++.

3. It can be used on all major platforms (Windows, Linux/Unix, Mac etc.)

4. Easy to learn.

5. And it is free.

1.2 Python Installation

Usually all the Linux/Unix system has Python by-default. If it is not there, or for non-linux/unix
users, the basic version of Python can be downloaded by following the instructions provided below.
The basic Python version includes minimal packages required to run the python, and some other
additional packages. For most of the hydrological applications, these packages are not enough, and
we require additional packages. In the next section, I will be describing how to install additional
packages. Throughout the book, the chevron (>>>) represents the Python shell, and $ represents the
Unix/Linux shell or window’s command line. The installation of Python for the various operating
system is done in the following way.
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1.2.1 Ubuntu/Debian

In the Ubunt/Debian, the Python is installed by running the usual installation command, i.e.:

$ sudo apt-get install python

1.2.2 Fedora

On Fedora, the installation of the Python is performed in the following way.

$ sudo yum install python

1.2.3 FreeBSD

Python is installed on FreeBSD by running:

$ sudo pkg_add install python

The Linux user might be familiar with sudo. It allows user to run programs with the security
privileges of root or administrator. Window user can ignore sudo, as they do not need to specify this.

1.2.4 Windows

For Windows users, the suitable version of Python can be downloaded from http://www.python.
org/getit/. It provides a .msi file, which can be easily installed by double clicking on it.

1.2.5 Mac OS

Mac OS users also can download a suitable version of Python from http://www.python.org/
getit/ and install it.

1.3 Install additional packages

Pip is a useful program to install additional packages in Python. Before installing pip, distribute
should be installed. To do so, first we need to download Distribute, which is done by download-
ing distribute_setup.py file from http://python-distribute.org/distribute_setup.py,
and running the following command:

$ sudo python distribute_setup.py

Now download the get-pip.py from https://github.com/pypa/pip/raw/master/contrib/
get-pip.py, and run as root:

$ sudo python get-pip.py

http://www.python.org/getit/
http://www.python.org/getit/
http://www.python.org/getit/
http://www.python.org/getit/
http://python-distribute.org/distribute_setup.py
https://github.com/pypa/pip/raw/master/contrib/get-pip.py
https://github.com/pypa/pip/raw/master/contrib/get-pip.py
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Note, that the distribute_setup.py and get-pip.py should be in your current working directory
while installing, otherwise give the full path name of file. If you did not get any error in this
procedure, pip should be ready to install new packages. The procedure to install packages is simple
e.g. suppose you want to install package SomePackage, then run the following command:

$ sudo pip install SomePackage

In hydrology, frequently used packages are Numpy, Scipy, xlrd, xlwt, and gdal, so these should
be installed at this stage. Later whenever a new package/library will be needed, instructions to
download them will be given there.

$ sudo pip install Numpy
$ sudo pip install Scipy
$ sudo pip install xlrd
$ sudo pip install xlwt
$ sudo pip install gdal

These packages/libraries can be installed by specifying all packages name in one line, i.e.
$ sudo pip install Numpy Scipy xlrd xlwt gdal. But, at this time it is better to install them
in seperate line, so that if you get some error, you can easily find out which pakcage is giving error.
Most common problem with pip is that, it is not able to download library/package from internet. In
that case, you can download *.tar.gz library using internet browser, and then run the pip in the
following way:

$ sudo pip install /path/to/*.tar.gz

Additionally, window user can download *.exe or *.msi file if available and then download by
double clicking it.

If this also fails then, as a last option, you can download *.tar.gz file and extract it. Then, go
to the folder where you have extracted the file. You should see setup.py file there. Now, run the
following command:

$ sudo python setup.py install

If you see any error in this, which could possibly come because of some dependent package/library
is not available in your computer. You should read the README file provided with the package, it can
give you details of required package/library, and how to install them.

The package/libraries are upgraded using the pip in the following way.

$ sudo pip install --upgrade some_package

1.4 Interactive Development Environment

Simple text editors can be used to write Python programs, but these do not provide options for easy
formatting of text, debugging options etc. IDE (Interactive Development Environment) provides
many options to quickly format the program in Python way, and easily debugging them. There are
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various IDE available for use e.g. PyDev, Spyder, IDLE, and many many others. A list of them
can be found at http://wiki.python.org/moin/IntegratedDevelopmentEnvironments. I am
using Spyder for my work, which is similar to MATLAB. The reason to use Spyder was since earlier
I used to work on MATLAB, and Spyder is similar to it, and I found myself to be familiar with it.
However you can use any IDE, and after being familiar, it doesn’t matter which one you use.

1.5 Execute the program

Python is an interpreted language as the programs are executed by an interpreter. There are two ways
to use the interpreter: interactive mode and script mode. In the interactive mode, you type Python
programs (after invoking the python, which is done by typing python in a terminal or command
window) and interpreter prints the result, e.g. we do 1+1 in it.

>>> 1 + 1
2

The chevron, >>>, is the prompt which interpreter uses to indicate that it is ready. If you type 1
+ 1, the interpreter replies 2. Alternatively, you can store code in a file and use the interpreter to
execute the contents of the file, which is called a script. By convention, Python scripts have names
that end with .py. Suppose you have named you script as myscript.py, and you want to execute
it, in a Unix/Linux shell, you would do:

$ python myscript.py

or, you can give your script executable permission and simply run the script. The syntax to do is:

$ chmod +x myscript.py
$ ./myscript.py

In IDE’s, the details of executing scripts are different. You can find instructions for your environment
at the Python website python.org.

Working in interactive mode is convenient for testing small pieces of code because you can type and
execute them immediately. But for anything more than a few lines, you should save your code as a
script so you can modify and execute it in the future.

1.6 Type of errors

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic errors. It
is useful to distinguish between them in order to track them down more quickly.

1.6.1 Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the interpreter displays an
error message. Syntax refers to the structure of a program and the rules about that structure. For
example, parentheses have to come in matching pairs, so (1 + 2) is legal, but 8) is a syntax
error.

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments
python.org
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1.6.2 Runtime errors

The second type of error is a runtime error, so called because the error does not appear until after the
program has started running. These errors are also called exceptions because they usually indicate
that something exceptional (and bad) has happened.

1.6.3 Semantic errors

The third type of error is the semantic error. If there is a semantic error in your program, it will
run successfully in the sense that the computer will not generate any error messages, but it will not
do the right thing.

1.7 The first program
Traditionally, the first program you write in a new language is called “Hello, World!” because all it
does is display the words, “Hello, World!”. In Python, it looks like this:

>>> print 'Hello, World!'

This is an example of a print statement, which doesn’t actually print anything on paper. It displays
a value on the screen. In this case, the result is the words:

Hello, World!

The quotation marks in the program mark the beginning and end of the string.
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Chapter 2

A bit of Python

Before jumping into application of Python into hydrology, which would involve writing many lines
of coding, manipulating arrays, etc. It is better to learn some basics of Python, e.g. the types of data,
looping (performing same task many times), and writing functions etc. First thing to know is the
type of data.

2.1 Data type

There are basically two types of data; numbers and strings. The type function returns the type of
data.

2.1.1 Numbers

There are three types of number in Python: integers, floating point and complex numbers. Integers
are needed for indexing the arrays (vector, matrix), for counting etc. In Python there is no need to
define the variable type a priori, and it is allowed to even change the data type later in the program,
wherever needed.

>>> a = 5
>>> type(a)
<type 'int'>

This means that, the data type is integer. The lines in the program without chevron (>>>) represents
the output by the Python. Another most commonly used data type is float. Most of the hydrological
variables belongs to this category of data type.

>>> b = 7.8
>>> type(b)
<type 'float'>

This means the data type is floating point. Another data type is complex, which is not frequently
needed in day to day hydrological life.
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>>> c = 5 + 2j
>>> type(c)
<type 'complex'>

The c represents the complex data type.

2.1.2 Strings

A string is a sequence of characters. There are three way to specify a string.

single quotes: The text written inside single quotes is treated as string by Python.

>>> foo = 'my name is Joe'
>>> print(foo)
my name is Joe

double quotes: Double quotes are also used to define a string. If single quotes are able to define
why is double quotes needed? Let us try to write What's your name? using single quotes.

>>> foo = 'what's your name?'
File "<stdin>", line 1

foo = 'what's your name?'
ˆ

SyntaxError: invalid syntax

This produces SyntaxError. Let us try using double quotes.

>>> foo = "what's your name?"
>>> print(foo)
what's your name?

Double quotes provide an easy way to define strings which involve single quotes. However,
the same task can be performed using single quote also. The same string can be written using
single quote only by using the \ before ' .

>>> foo = 'what\'s your name?'
>>> print(foo)
what's your name?

triple quotes: When the strings spans over more than one line, triples quotes are best to define
them. Multi-line strings can also be specified using escape sequence \n in single or double
quote strings, triple quotes make it easier to write. Triple quotes are useful for other things
(making help content for functions) also, which you will read later in the book.

>>> foo = """My name is Sat Kumar.
... I am in PhD """
>>> print foo
My name is Sat Kumar.
I am in PhD
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2.2 Data structures

Data structures are able to contain more than one data in it. There are four built-in data structures in
Python: list, tuple, dictionary and set. Apart from these built-in data structure, you can define
your own data type also like numpy.array defined by numpy, which is very useful. I did not feel
any need to use the set in hydrology, so I am skipping set here, if you are interested you can learn
about it from some other source.

2.3 Data structures

2.3.1 List

A list is a sequence of items (values). The items in it could belong to any of data type, and could be
of different data type in the same list.

>>> a = ['Ram', 'Sita', 'Bangalore', 'Delhi']
>>> b = [25, 256, 2656, 0]
>>> c = [25, 'Bangalore']

The items in the list are accessed using the indices. The variable a and b hold items of similar data
types, while c holds items of different data types. In Python, the indices starts at 0. So, to get the
first and third item, the indices should be 0 and 2.

>>> a = ['Ram', 'Sita', 'Bangalore', 'Delhi']
>>> print a[0]
Ram
>>> print a[2]
Bangalore

Negative indices are also allowed in Python. The last item in the list has -1 indices, similarly second
last item has indices of -2 and so on.

>>> a = ['Ram', 'Sita', 'Bangalore', 'Delhi']
>>> print a[-1]
Delhi

Likewise, second last item in the list can be accessed by using the indices -2.

2.3.2 Dictionary

In the list, the indices are only integers. Dictionary has the capability to take any data type as indices.
This feature of dictionary makes it very suitable, when the indices are name etc. For example, in
hydrology the name of field stations and their corresponding variables are given for each station. Let
us try to retrieve the value of variable by using list first, and then by using dictionary. We can use
one list to store the name of stations, and one for the variable. First, we need to find the indices of
station, and then use this indices to access the variable from the list of variables.
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>>> names = ['Delhi', 'Bangalore', 'Kolkata']
>>> rainfall = [0, 5, 10]
>>> print(rainfall[ind])
5

Now, let us try this using dictionary.

>>> rainfall = {'Delhi':0, 'Bangalore':5, 'Kolkata':10}
>>> rainfall['Bangalore']
5

The same thing could have been done using list in one line, but dictionary provides a neat and clean
way to do this.

2.3.3 Tuple

A tuple is a sequence of values, similar to list except that tuples are immutable (their value can not
be modified).

>>> foo = 5,15,18
>>> foo[2]
5
>>> foo[1] = 10
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

While trying to modify the items in the tuple, Python issues an error. Tuples are useful there is a
need to specify some constants, and to make sure that these constants do not change. The immutable
property of tuples ensures that during executions of the program the value of constants will not
change.

A tuple having only one item is defined by using the ',' after this, e.g. :

>>> foo = 5
>>> type(foo)
<type 'int'>
>>> foo = 5,
>>> type(foo)
<type 'tuple'>

You might have noticed that without using the comma (’), Python does not take it as tuple.

2.3.4 Numpy.array

NumericalPython (NumPy) is a library/package written mainly in C programming language, but
application programming interface (API) is provided for Python. The library provided numpy.array
data type, which is very useful in performing mathematical operation on array. It is the type of
data, that we would be dealing most of the time. This library is not a part of the standard Python
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distribution, hence before using this, NumPy have to be installed in the system. We can check if
NumPy is installed in our system or not, by using the following command:

$ python -c'import numpy'

If this command gives no output (no error), then it means that NumPy is installed. If NumPy is not
installed in the system, you will see some message (error) like following:

$ python -c'import numpy'
Traceback (most recent call last):

File "<string>", line 1, in <module>
ImportError: No module named numpy

This means, that numpy is not installed in the system. You can install NumPy by following the steps
provided in the section 1.3. The python -c'import numpy' is a way to run some simple code
without invoking the python. This is useful when you want to do something small, quickly. This is
very helpful when you want to check if some package is installed or not in your system.

Before using any library, it should be imported into the program. The import can be used to import
the library. There are three ways to import a complete library or some functions from the library. By
importing complete library.

>>> import numpy
>>> x = [1, 2, 5, 9.0, 15] # list containing only numbers (float or integers)
>>> type(x)
<type 'list'>
>>> x = numpy.array(x) # convert the list into numpy array
>>> type(x)
<type 'numpy.ndarray'>

We imported the complete library numpy, and after doing so, whenever we need any function
(i.e. array) from this library, we need to provide name along with the name of library (i.e.
numpy.array). The array function converts a list of integers or/and float into numpy array. Of-
ten the library name are quiet long, and it can be abbreviated using as in the following manner.

>>> import numpy as np
>>> x = np.array(x) # convert the list into numpy array
>>> type(x)
<type 'numpy.ndarray'>

If only few functions are needed then they can be imported by explicitly defining their name.

>>> from numpy import array
>>> x = array(x) # convert the list into numpy array
>>> type(x)
<type 'numpy.ndarray'>

If all the functions are needed, and you do not want to use numpy or np before them, then you can
import in the following way.
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>>> from numpy import *
>>> x = array(x) # convert the list into numpy array
>>> type(x)
<type 'numpy.ndarray'>

Anything written after # is comment for program, and Python does not execute them. Comments
are useful in making your code more readable. The comments can be in full line also. A numpy
array is a homogeneous multidimensional array. It can hold only integer, only float, combination of
integers and float, complex numbers and strings. If combination of integers and float are specified in
numpy.ndarray, then integers are treated as floats. The data type of numpy.ndarray can be checked
using its attribute dtype.

>>> import numpy as np
>>> x = np.array([1,5,9.0,15]) # np.array can be defined directly also
>>> x.dtype
dtype('float64')
>>> x = np.array([1,5,9,15]) # this is holding only integers
>>> x.dtype
dtype('int64')
>>> x = np.array(['Delhi', 'Paris']) # this is holding strings
>>> x.dtype
dtype('|S5')

The mean of the array can be computed using method mean, in the following manner.

>>> import numpy as np
>>> x = np.array([1,5,9.0,15])
>>> x.sum()
30.0

Did you notice the difference between calling attributes and methods? The methods perform some
action on the object, and often action needs some input, so methods are called with brackets (). If
there is some input to be given to method, it can be given inside brackets, if there is no input then
empty brackets are used. Try using the methods (e.g. sum) without giving the bracket, you will see
only some details about it, and no output.

As Python is object oriented programming (OOP) language, and attributes and methods are used
quiet commonly. It is better to know briefly about them before jumping into Python. Attributes
represent properties of an object, and can be of any type, even the type of the object that contains
it. methods represent what an object can do. An attribute can only have a value or a state, while a
method can do something or perform an action.

2.4 Choosing the name of variable
Then name of the variables should be meaningful, and possibly should be documented what the
variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers, but they have to
begin with a letter. It is legal to use uppercase letters, but it is a good idea to begin variable names
with a lowercase letter, as conventionally uppercase letters are used to denote classes.
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The underscore character (_) can appear in a name. It is often used in names with multiple words,
such as my_name or airspeed_of_unladen_swallow. A variable name can be started with under-
score, but should be avoided because this is used for something else conventionally.

Python has some of the reserved keywords, which can not be used as variable name. If the interpreter
gives some error about one of your variable names and you don’t know why, you should check if
your variable name is not in the reserved keyword list. It is a good idea to remember the list, or
keep it handy. But I, being a lazy person, do not remember this list, and in fact even never tried
to remember. I just type the name of variable, I want to use in python, and look for the output by
python, and then decide whether to use this name for variable or not.

>>> 500_mangoes
File "<stdin>", line 1

500_mangoes
ˆ

SyntaxError: invalid syntax
>>> class

File "<stdin>", line 1
class

ˆ
SyntaxError: invalid syntax
>>> np
<module 'numpy' from '/usr/lib/pymodules/python2.7/numpy/__init__.pyc'>
>>> foo
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'foo' is not defined

First variable name 500_mangoes gives SyntaxError, so we cant use this name as variable. The
class gives the SyntaxError too, so it also can not be used. The np gives some output (which
means np is referring to something), so if we use this as variable name, the reference will be de-
stroyed. The foo gives NameError that the variable is not defined, this makes it a valid choice for
the variable name. Apart from these scenarios, one more output is possible.

>>> a = 5
>>> a
5

This means that variable a is defined before, now it is upto you, if you want to change its old value.

2.5 Operators and operands

Operators are special symbols that represent computations like addition and multiplication. The
values the operator is applied to are called operands. Assume variable a holds 2 and variable b
holds 5.
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Operator Name Example

+ Plus >>> a+b
7

- Minus >>> a-b
-3

* Multiply >>> a*b
10

/ Divide >>> a/b
0 (for Python 2.x)
0.4 (for Python 3.x)

** Power >>> a**b
32

% Modulo >>> b\%a
1

== Equal to >>> a==b
False

< Less than >>>a<b
True

> Greater than >>>a>b
False

<= Less than or Equal to >>>a<=b
True

>= Greater than or Equal to >>>a>=b
False

!= Not equal to >>>a!=b
True

and And >>> True and False
False

or Or >>> True or False
True

not Not >>> not True
False

+= Add AND assignment >>> a += b
7

−= Subtract AND assignment >>> a -= b
3

∗= Multiply AND assignment >>> a *= b
10

/= Divide AND assignment >>> a /= b
0

% = Modulus AND assignment >>> a %= b
2

∗∗= Exponent AND assignment >>> a **= b
32

//= Floor division AND assignment >>> a //= b
0
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2.6 Expressions
An expression is a combination of values, variables, and operators. A value all by itself is considered
an expression, and so is a variable, so the following are all legal expressions (assuming that the
variable x has been assigned a value:

>>> x = 17
>>> x + 15
32

If you type an expression in interactive mode, the interpreter evaluates it and displays the result:

>>> 1 + 1
2

But in a script, an expression all by itself doesn’t do anything! This is a common source of confusion
for beginners.

2.7 Control Flow
If we want to do same task many times, restrict the execution of task only when some condition is
met, control flow is the way to do it.

2.7.1 for

for is used to repeatedly execute some code. It also can be used to iterate over some list. Suppose
you have some list, and you want to square the each item in list and print.

>>> foo = [5, 11, 14, 0, 6, 0, 8] # define the list
>>> for item in foo:
... print item**2
...
25
121
196
0
36
0
64

The item in the list can be iterated by defining another list having integers, and iterating over it. Let
us try this way to perform the above task.

>>> foo = [5, 11, 14, 0, 6, 0, 8] # define the list
>>> a = range(7) # define the list having integers
>>> a
[0, 1, 2, 3, 4, 5, 6]
>>> for item in a:
... print foo[item]**2
...
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25
121
196
0
36
0
64

2.7.2 while

while statement is used, when we want to keep on executing the some code unless some condition
is met or violated. Suppose, we want to print some numbers ranging from 15 to 20, we could do like
this.

>>> n = 15 # initialize the n
>>> while n<=20:
... print n
... n = n+1
...
15
16
17
18
19
20

2.7.3 if

if statement execute some portion of the code, if the conditions are met, otherwise it skips that
portion. Suppose you have some list, and you want to compute its inverse, but want to skip if the
entry in list is zero:

>>> foo = [5, 11, 14, 0, 6, 0, 8] # define the array
>>> for item in foo:
... if item is not 0:
... print 1.0/item
...
0.2
0.0909090909091
0.0714285714286
0.166666666667
0.125

The if-else allows alternative portions of code to execute depending upon the condition. In
if-else only one portion of code is executed from the given alternatives. Suppose in the previ-
ous example, you want to issue some statement when there is 0 in the list.
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>>> foo = [5, 11, 14, 0, 6, 0, 8] # define the array
>>> for item in foo:
... if item is not 0:
... print 1.0/item
... else:
... print '0 found in list'
...
0.2
0.0909090909091
0.0714285714286
0 found in list
0.166666666667
0 found in list
0.125

if-elif-else is used when depending upon the condition, you want to execute some portion of
code. You can specify as many conditions you want, and their corresponding code to execute. Lets
take one example, suppose we have one list, and we want to print some statement if the item in list
is negative, positive or 0.

>>> foo = [5, -11, 14, 0, -6, 0, 8] # define the array
>>> for item in foo:
... if item < 0:
... print 'item is negative'
... elif item>0:
... print 'item is positive'
... else:
... print 'item is 0'
...
item is positive
item is negative
item is positive
item is 0
item is negative
item is 0
item is positive

2.7.4 break

The break statement, breaks out of the loop. Suppose you want to print all the items in the list, but
you want to stop the loop if you encounter 0.

>>> for item in foo:
... if item==0:
... print('zero found in the list, stopping iterations')
... break
... else:
... print(item)
...
5
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-11
14
zero found in the list, stopping iterations

The break statement becomes useful when you want to want if something strange happens to your
program, and in that condition you want to stop the execution.

2.7.5 continue

The continue statement provides opportunity to jump out of the current loop (iteration) when some
condition is met. Suppose you do not want to print items in the list which are negative.

>>> foo = [5, -11, 14, 0, -6, 0, 8] # define the array
>>> for item in foo:
... if item<0:
... continue
... print item
...
5
14
0
0
8

2.7.6 pass

The pass statement does nothing. It can be used when a statement is required syntactically but the
program requires no action.

>>> foo = [5, -11, 14, 0, -6, 0, 8] # define the array
>>> for item in foo:
... pass
...

This is often used, when you are developing your code, and intent to put something later. If you
leave without pass, Python will issue the error.

2.8 Function

Function is a some sequence of statements that does some processing. When you define a function,
you specify the name and the sequence of statements. Later, you can call the function by name.
There are many built in functions in the Python, and each library provides some functions. You
can also specify your functions. When you need to do some task many times, it is better to define
function to do that task, and later call the function. The thumb rule is that, whenever you feel to
define one function define it.
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2.8.1 In-built functions

Python has some in-built functions, some of them we have already used.

>>> foo = [5, -11, 14, 0, -6, 0, 8] # define the array
>>> type(foo)
<type 'list'>
>>> len(foo)
7
>>> max(foo)
14

Here, type, len, max are in-built functions, which returns the type, length of the list, and maximum
value in the list respectively.

2.8.2 User defines functions

If you do not find the function that you intent to use, you can define one. In fact, it is a good practice
to define functions whenever they are needed, it increase the readability of the codes. A function
definition specifies the name of a new function and the sequence of statements that execute when
the function is called.

Suppose, you want to define a function which adds the 2 into the input.

>>> def add2(temp):
... return temp+2
...
>>> add2(5)
7
>>> foo = np.array( [5, -11, 14, 0, -6, 0, 8]) # define the array
>>> new_foo = add2(foo)
>>> print new_foo
array([ 7, -9, 16, 2, -4, 2, 10])

The return defines the output from the function. return is optional, some functions may not return
anything.

>>> foo = [5, -11, 14, 0, -6, 0, 8] # define the array
>>> def add2(temp):
... print temp[-1]+2 # add 2 to only the last entry in the list
...
>>> add2(foo)
10
>>> new_foo = add2(foo)
10
>>> new_foo

This is clear from this example that functions need not to return any values. Like in this example,
function only print the last entry of the list after adding 2 to it, and returns none.
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2.9 Plotting
There are various library which provides plotting capabilities in Python. I liked Matplotlb library,
and it is installed in the following manner.

$ sudo pip install matplotlib

Let us make our first plot which plots y versus x. The x contains values between 0 and 2π with 50
intervals, and y is the sin of x.

>>> # import the required modules
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> # generate x over the range from 0 to 2 pi with 50 intervals
>>> x = np.linspace(0,2*np.pi,50)
>>> y = np.sin(x) # compute the sin of x
>>> plt.plot(x,y)
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend(['sin(x)'])
>>> plt.show()

The plt is the given abbreviated name, which refers to the matplotlib.pyplot library. All the
function of this library should be called by using plt. while using them. The plot makes the
continuous line plot, xlabel puts the label for the x-axis, and ylabel puts the label for y-axis. The
legend displays the legend on the graph. show() displays the graph, the graph can be save by using
the savefig and can be closed by using the close(). Fig. 2.1 shows the plot of y versus x. The
function np.linspace is used to generate vector over the range 0 to 2π having 50 equally spaced
elements. More on generating this kind of vectors is given in the next chapter.
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Figure 2.1: The first plot which shows y = sin(x) versus x.
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Array

3.1 Generating sequential arrays

Often we need vectors whose elements follow a simple order, for example a vector containing ele-
ments [10, 11, 12, 13] or [5, 10, 15, 20] or [1.0, 1.2, 1.4, 1.6, 1.8, 2.0]. We see that in these vectors,
items follow some simple order, so it would be nicer if there are easy way to define these kinds of
vectors. Some of the way to create these vectors are following:

3.1.1 linspace

If we are interested in generating the vector, whose elements are uniformly spaced and we know the
upper, lower limit and the number of elements, then in that case linspace is the preferred choice.

>>> import numpy as np
>>> np.linspace( 0, 2, 9 )
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])

Because linspace lies in numpy library, so first we have imported the library and have given it
an abbreviated name. Then we call the linspace with lower limit, upper limit and the number of
element to be generated. In this example, 0 is the lower limit, 2 is the upper limit, and number of
elements are 9. Let us generate one more vector to understand more about this function, this time
we take lower limit as 0, upper limit as 2π, and number of elements to be 100.

>>> x = np.linspace( 0, 2*pi, 100 )

By default the number of elements are 50, so if we do not specify the number of elements, we get
50 elements with equal spacing. We can use len function to get the length of any array.

>>> foo = np.linspace(0,1)
>>> len(foo)
50
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3.1.2 arange

Suppose again we want to generate a vector whose elements are uniformly spaced, but this time we
do not know the number of elements, we just know the increment between elements. In such situ-
ation arange is used. arange also requires lower and upper bounds. In the following example we
are generating the vector having lower element as 10, upper element as 30 and having an increment
of 30. So from the knowledge of linspace we will do something like this.

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])

Oh! What happened? Why did Python not print 30. Because arange function does not include
second argument in the elements. So we want to print upto 30, we would do.

>>> np.arange( 10, 31, 5 )
array([10, 15, 20, 25, 30])

This time we get the required output. The arange can also take a float increment. Let us generate
some vector with lower bound of 0, upper bound of 2 and with an increment of 0.3.

>>> np.arange( 0, 2, 0.3 ) # it accepts float arguments
array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

In the case of float increment also, the maximum value of generated elements is lesser than the
second argument given to the arange.

3.1.3 zeros

zeros is used when we want to generate all the items in vector as 0.

>>> foo = np.zeros(5)
>>> foo
array([ 0., 0., 0., 0., 0.])

3.1.4 ones

ones is used when all the required elements in vector are 1. Let us say, we want to generate a
variable foo which has all the elements equal to one, and has the dimension of 3×2.

>>> foo = np.ones((3,2))
>>> foo
array([[ 1., 1.],

[ 1., 1.],
[ 1., 1.]])

Remember that if the number of dimensions are more than one, the dimension are given as tuple,
e.g. (2,5).
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3.1.5 empty

empty is useful in initializing the variables. This assigns the garbage values to the elements, which
are to be modified later.

>>> foo = np.empty((2,5))
>>> foo
array([[ 6.94573181e-310, 2.76947193e-316, 2.74957018e-316,

0.00000000e+000, 0.00000000e+000],
[ 0.00000000e+000, 0.00000000e+000, 6.94573152e-310,

6.34874355e-321, 0.00000000e+000]])

Additionally in zeros, ones, empty, the data type (e.g. int, float etc.) also can be defined.

>>> foo = np.empty((2,5),int)
>>> foo
array([[ 140583176970856, 56931856, 59487840,

-3617040655747907584, 0],
[ 0, 0, 140583171090560,

1285, 0]])

You can see that all the elements of foo are now integer, even though the values are useless.

3.1.6 rand

rand is used to generate uniformly distributed random variables over the range of 0 to 1.

>>> foo = np.random.rand(3,2)
>>> foo
array([[ 0.75644359, 0.07754619],

[ 0.50267515, 0.91460249],
[ 0.85992345, 0.58662329]])

3.1.7 randn

randn is used to generate random variable having normal distribution with mean equal to zero and
variance equal to one.

>>> foo = np.random.randn(2,4)
>>> foo
array([[-0.66317015, -1.80129451, 0.56398575, -1.11912727],

[ 0.19218091, 0.21957804, -1.10891128, -0.87418933]])

3.2 Useful attributes and methods
The ndarray (array generated using numpy) provides attributes to perform commonly used task
quickly. These attributes are used to quickly get properties of ndarray. So let us first generate some
vector whose elements are normally distributed random numbers, and try these attributes. Here I
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am using normally distributed random variable to demonstrate, but these attributed can be used with
any numpy array. We are generating a 2 dimensional vector of size 5×100.

>>> foo = np.random.randn(5,100)

Let us check the number of dimension (not the size, or shape of the array). Number of dimension
means how many dimensions are associated with array. For example, in mathematics terminology
vector has one dimension, matrix has two dimension.

>>> foo.ndim
2

The dimension of the array is accessed by using shape attribute.

>>> foo.shape
(5, 100)

The size attribute provides the total number of elements in the array. This is simply the multiplica-
tion of all the elements given by shape attributes.

>>> foo.size
500

The data type (i.e. float, integer etc.) is extracted using the attribute dtype.

>>> foo.dtype
dtype('float64')

This tells us that, the variable foo is float, and has 64 bits. The average or mean of the variable is
computed by using mean method.

>>> foo.mean()
-0.11128938014455608

This provides the mean of entire array (i.e. 500 elements in this case). Suppose we want to estimate
the mean across some dimension say second (1) dimension, then in this case we need to provide
additional parameter to mean, i.e. axis.

>>> foo.mean(axis=1)
array([-0.07311407, 0.0705939 , -0.09218394, 0.0775191 , 0.01026461])

The minimum, maximum, standard deviation and variance of the array are estimated using min, max,
std, and var methods.

>>> # to get the minimum vale
>>> foo.min()
-3.5160295160193256
>>> # to get the maximum value
>>> foo.max()
3.0989215376354817
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>>> # to get the standard deviation
>>> foo.std()
0.9528004743319175
>>> # to get the variance
>>> foo.var()
0.90782874388712709

Remember that the line starting with # represents the comments. Comments make it easier to read
and understand the code. So put comments whenever you do something, which is not easy to
interpret from the code.

The trace of the matrix represent the sum of diagonal elements, and has meaning in case of square
matrix. Python even allows to estimate the trace even when matrix is not square, and trace is com-
puted by using the trace attributes.

>>> foo.trace()
1.081773080044246

There are number of attributes associated with each class, dir function is a useful tool in exploring
the attributes and method associated with any variable, class, library etc. Let us see what all methods
and attributes our variable foo have.

>>> # to get the list of all the attributes associated with foo variable
>>> dir(foo)
['T', '__abs__', ............. 'flat', 'view']

The output of dir(foo) is very long, and is omitted for brevity. The attributes/method starting with
_ are supposed to be the private attributes and are often not needed.

3.3 Indexing

In this section, we will discuss how to refer to some elements in the numpy array. Remember that in
Python first indices is 0. We shall generate some array, say some array whose elements are powered
to 3 of the sequence [0,1, ..., 9].

>>> foo = np.arange(10)**3
>>> foo
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])

Print the third item in the array. Third item means we need to put indices as 2.

>>> foo[2]
8

Suppose, we would like to print some sequence of array, say at indices of 2,3, and 4.

>>> foo[2:5]
array([ 8, 27, 64])
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We used 2:5 to get the values at indices of 2,3 and 4. This is same as saying that
foo[np.arange(2,5,1)]. When we do not specify the third value in the indices for array, it is
by default taken as 1. If we want to print value at 2 to 8, with an interval of 3. Now because the
interval is not 1, so we need to define it.

>>> foo[2:10:3]
array([ 8, 125, 512])

If we leave the first entry in the index as blank i.e. to get array elements form the beginning of array
with an interval of 2 and upto 6, we issue the following command:

>>> foo[:6:2] # gives the element at 0,2,4
array([ 0, 8, 64])

We get element upto the indices of 4, because arange does not go upto the second argument. We
can use indices also to modify the existing elements in the array, in the same way as we accessed
them. Let us replace the existing value of elements at 0,2 and 4 indices, by -1000.

>>> foo[:6:2] = -1000 # modify the elements at 0,2,4
>>> foo
array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729])

We get the last elements of an array by indices -1. We can also use this to reverse the array, by
giving the increment of -1.

>>> foo[::-1] # reversed a
array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000])

We can perform the calculation on entire numpy array at once. Suppose we are interested in esti-
mating the square root of the numpy array, we can use sqrt function of numpy library.

>>> np.sqrt(foo) # compute the square root
array([ nan, 1. , nan, 5.19615242,

nan, 11.18033989, 14.69693846, 18.52025918,
22.627417 , 27. ])

Warning: invalid value encountered in sqrt

nan represents that the element is ‘Not A Number’. So when the value of element is negative the
output of sqrt become nan. The Warning issued by Python tells that there were some invalid values
in the input for which sqrt can not produce any sensible output, and it provides warning (not errors).
In reality, the square root of negative number is complex number, but because we did not define the
variable as complex, numpy can not perform operations of complex numbers on this. We need
library which handles complex number for such situation.

3.4 Array Manipulation
Often we need to change the array, transpose it, get some elements, or change some elements. This
is illustrated by this example, in which first we create the array and then play with it. We have
already seen in the previous section, that we can change the value of any element by calling it by the
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indices, and then assigning new value to it. First, we generate normally distributed random number
of size (2×5) to create an array, which we would like to manipulate.

>>> foo = np.random.randn(2,3)
>>> foo
array([[ 1.02063865, 1.52885147, 0.45588211],

[-0.82198131, 0.20995583, 0.31997462]])

The array is transposed using T attributes.

>>> foo.T
array([[ 1.02063865, -0.82198131],

[ 1.52885147, 0.20995583],
[ 0.45588211, 0.31997462]])

We can access some elements of the array, and if we want, new values also can be assigned to them.
In this example, we shall first access element at (0,1) indices, and then we shall replace it by 5.
Finally we will print the variable to check if the variable got modified.

>>> foo[0,1]
-0.82198131397870833
>>> foo[0,1]=5
>>> foo
array([[ 1.02063865, 5. ],

[ 1.52885147, 0.20995583],
[ 0.45588211, 0.31997462]])

The shape of any array is changed by using the reshape method. During reshape operation, the
change in number of elements is not allowed. In the following example, first we shall create an
array having size of (3×6), and the we shall change its shape to (2×9).

>>> foo = np.random.randn(3,6)
array([[ 2.01139326, 1.33267072, 1.2947112 , 0.07492725, 0.49765694,

0.01757505],
[ 0.42309629, 0.95921276, 0.55840131, -1.22253606, -0.91811118,

0.59646987],
[ 0.19714104, -1.59446001, 1.43990671, -0.98266887, -0.42292461,
-1.2378431 ]])

>>> foo.reshape(2,9)
array([[ 2.01139326, 1.33267072, 1.2947112 , 0.07492725, 0.49765694,

0.01757505, 0.42309629, 0.95921276, 0.55840131],
[-1.22253606, -0.91811118, 0.59646987, 0.19714104, -1.59446001,

1.43990671, -0.98266887, -0.42292461, -1.2378431 ]])

Like we can access the any elements of the array and change it, in similar way we can access the any
attributes, and modify them. However, the modification is only allowed if the attributes is writeable,
and the new value makes some sense to the variable. We can use this behaviour, and change the
shape of variable using the shape attributes.

>>> foo = np.random.randn(4,3)
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>>> foo.shape
(4, 3)
>>> foo
array([[-1.47446507, -0.46316836, 0.44047531],

[-0.21275495, -1.16089705, -1.14349478],
[-0.83299338, 0.20336677, 0.13460515],
[-1.73323076, -0.66500491, 1.13514327]])

>>> foo.shape = 2,6
>>> foo.shape
(2, 6)
>>> foo
array([[-1.47446507, -0.46316836, 0.44047531, -0.21275495, -1.16089705,

-1.14349478],
[-0.83299338, 0.20336677, 0.13460515, -1.73323076, -0.66500491,
1.13514327]])

In the above example, first an array is defined with a size of (4×3) and then its shape is assigned a
value of (2,6), which makes the array of size (2×6). As we can not change the number of elements,
so if we define one dimension of the new variable, second dimension can be computed with ease.
Numpy allow us to define -1 for the default dimension in this case. We can make the desired change
in the shape of variable by using default dimension also.

>>> foo.shape = -1,6
>>> foo.shape
(2, 6)

We can flatten the array (make array one dimensional) by using the ravel method, which is ex-
plained in the following example:

>>> foo = np.random.rand(2,3)
>>> foo
array([[ 0.82866532, 0.99558838, 0.58213507],

[ 0.48877906, 0.67700479, 0.35975352]])
>>> foo.shape
(2, 3)
>>> a = foo.ravel()
>>> a.shape
(6,)
>>> a
array([ 0.82866532, 0.99558838, 0.58213507, 0.48877906, 0.67700479,

0.35975352])
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Basic applications in Hydrology

4.1 Introdution

This chapter will provide applications of python in hydrology. Most of the problems given in
this chapter are taken from the book titled “Applied Hydrology” by Chow et al, and for detailed
description of them, you should refer to the book. These examples include the equations commonly
encountered in the hydrology. I have choose these problems to teach Python by using examples,
and additionally in every example we will be learning new things about Python.

4.2 Water Vapor

Approximately, the saturation vapor pressure (es) is related to the air temperature (T ) by the follow-
ing equation,

es = 611exp
(

17.27T
237.3+T

)
, (4.1)

where, es is in pascals and T is in degrees Celcius. Let us calculate the value of es at T = 50.

>>> T = 50
>>> es = 611*np.exp(17.27*T/(237.3+T))
>>> print(es)
12340.799081

Let us plot the variation of es versus T over the range of −100 ≤ T ≤ 100. The plt.plot(x,y)
makes the line plot of y versus x, with default color of blue. The plt.xlabel() and plt.ylabel()” are
used to write labels on x and y axis respectively. The input to xlable and ylabel must be a string,
or a variable which contains a string. The plt.show() displays the graph on computer screen.

>>> import numpy as np
>>> T = np.linspace(-100,100,50)
>>> es = 611*np.exp(17.27*T/(237.3+T))
>>> plt.plot(T,es)
>>> plt.xlabel('T (degree Celcius)')
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>>> plt.ylabel('es (Pa)')
>>> plt.show()

The resulted plot is shown in Fig. 4.1. This example demonstrates how to graphically visualize the
variation of one variable with respect to the another variable, while former is explicit function of
later.

100 50 0 50 100
T (degree Celcius)

0
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Figure 4.1: The variation of saturation vapor pressure (es) versus temperature (T ).

4.3 Precipitation

The terminal velocity (Vt) of a falling raindrop is given by:

Vt =

[
4gD
3Cd

(
ρw

ρa
−1
)]1/2

, (4.2)

where, g is the acceleration due to gravity, D is the diameter of the falling raindrop, ρw is the density
of water, ρa is the density of air, and Cd is the drag coefficient. The Stoke’s law can be used to
calculate drag coefficient (Cd = 24/Re), which is valid for raindrop having diameter less than 0.1
mm. Re is the Reynold number, which can be calculated as ρaV D/µa. Let us assume, that the Re is
given as 5.0, and the raindrop has diameter of 0.05 mm, and we want to estimate the Vt . (ρw = 998,
ρa = 1.2).

>>> import numpy as np
>>> Re = 5.0; rho_w = 998; rho_a = 1.2; g = 9.8; D = 0.05E-3
>>> Cd = 24/Re
>>> Vt = np.sqrt((4*g*D)/(3*Cd)*(rho_w/rho_a-1))
>>> Vt
0.3362483649967134

In this example we see that ‘;’ allows us to define many expressions in one line.
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4.4 Rainfall
Often, we are given a rainfall recorded by a rain gauge which provides the rainfall depths recorded
for successive interval in time, and we want to compute the cumulative rainfall. In this example first
we shall create rainfall using the random numbers, and we shall also create time variable having
values [0,5,10, ...., 100].

>>> import numpy as np
>>> time = np.linspace(0,100,21) # create time variable
>>> time
array([ 0., 5., 10., 15., 20., 25., 30., 35., 40.,

45., 50., 55., 60., 65., 70., 75., 80., 85.,
90., 95., 100.])

>>> rainfall = np.random.rand(21) # generate rainfall
>>> rainfall
array([ 0.08155645, 0.88821997, 0.33355457, 0.49600859, 0.6315054 ,

0.0722053 , 0.06165701, 0.96105307, 0.56483934, 0.5194715 ,
0.35780167, 0.98950575, 0.67866578, 0.31274527, 0.80022389,
0.53321842, 0.82370443, 0.73212013, 0.77039599, 0.06392391,
0.53481488])

Now we make a bar plot using the plt.bar(), for the rainfall which depicts temporal behaviour of
the rainfall.

>>> import matplotlib.pyplot as plt
>>> plt.bar(time,rainfall)
>>> plt.xlabel('Time')
>>> plt.ylabel('Incremental rainfall')
>>> plt.savefig('/home/tomer/articles/python/tex/images/rain.png')

The resulted bar plot of rainfall is shown in Fig 4.2. You might have noticed that in the section 4.2,
we used the plt.show(), while in the above example we used plt.savefig. The plt.show()
shows the graph on computer screen, which can be saved later, while the plt.savefig() saves the
graphs in computer, which can be viewed after opening the file. It is just matter of taste, what you
like, optionally both can be done on same graph. I prefer to save the figures in the computer and
then see them.

The cumulative sum is calculated by using the cumsum function of the numpy library.

>>> cum_rainfall = np.cumsum(rainfall)

Now we plot the cumulative rainfall. The resulted cumulative rainfall is shown in Fig. 4.3. The
plt.clf() clears the current figure, and is quiet useful when making multiples plots, and there is
any existing plot in the python memory. Just don’t use the clf in this, and see the difference.

>>> plt.clf()
>>> plt.plot(time,cum_rainfall)
>>> plt.xlabel('Time')
>>> plt.ylabel('Cummulative rainfall')
>>> plt.savefig('/home/tomer/articles/python/tex/images/cum_rain.png')
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Figure 4.2: Temporal variation in the incremental rainfall.

Figure 4.3: Temporal behaviour of the cumulative rainfall .

Usually, we are given the rainfall at some rain gauges, and we want to make the isohyete (contour)
plot of the rainfall. To demonstrate this situation, fist we shall generate locations (x,y) and rainfall
for ten stations using random numbers. The generated locations of the rain gauges is shown in Fig.
4.4.

>>> # import required modules
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>>
>>> #genrate locations and rainfall
>>> x = np.random.rand(10)
>>> y = np.random.rand(10)
>>> rain = 10*np.random.rand(10)
>>>
>>> #plot the locations
>>> plt.scatter(x,y)
>>> plt.xlabel('X')
>>> plt.ylabel('Y')
>>> plt.savefig('/home/tomer/articles/python/tex/images/loc.png')



4.4. Rainfall 33

I prefer to add blank lines after a section of code, and comment on the top of section what it is doing.
This increases the readability of the code. The plt.scatter() makes the scatter plot, i.e. the dots
are plotted instead of lines. When there is no order in the data with respect to their position in the
array, then scatter plot is used. Like in this case, it is possible that two stations which are close by,
but might be placed at distant in the array.

Figure 4.4: Spatial distribution of the rain gauges.

The flow chart of preparing contour map is given in Fig. 4.5. First, we need to generate the
grid with regular spacing having the same extent as of the locations of rainfall gauges. Then,
from the given location and rainfall data, we need to compute data at regular grid using some
interpolation scheme. After this contour maps can be obtained. The griddata function of the
scipy.interpolate library is useful in obtaining the gridded data (data at regular grid). When
we need only one or few functions from the library, it is better to call them explicitly, e.g.
from scipy.interpolate import griddata, like in the following example. We use meshgrid
function of numpy library, to create the mesh from the given x and y vectors.

>>> from scipy.interpolate import griddata
>>> #generate the desired grid, where rainfall is to be interpolated
>>> X,Y = np.meshgrid(np.linspace(0,1,1000), np.linspace(0,1,1000))
>>>
>>> #perform the gridding
>>> grid_rain = griddata((x,y), rain, (X, Y))

Now, we can make the contour plot of the gridded data, which is made by plt.contourf() function.
The contourf makes filled contours, while contour() provides simple contour. Try using the
contour instead of contourf, and you will see the difference. We begin by clear current figure
by using the plt.clf(), as there might be some existing figure in the memory especially if you
are following all the examples in the same session. We are also overlaying the locations of rainfall
gauges using the plt.scatter(). The s and c are used to define the size and color of the markers
respectively. The plt.xlim() and plt.ylim() limits the extent of the x and y axis respectively.

>>> plt.clf()
>>> plt.contourf(X,Y,grid_rain)
>>> plt.colorbar()
>>> plt.xlabel('X')
>>> plt.ylabel('Y')
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Location of gauges Data (e.g. rainfall)
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Figure 4.5: Flowchart of making contour map from the data of rainfall gauges

>>> plt.scatter(x, y, s=30, c='r')
>>> plt.xlim((0,1))
>>> plt.ylim((0,1))
>>> plt.savefig('/home/tomer/articles/python/tex/images/grid_rain.png')

Fig. 4.6 shows the gridded rainfall along with the location of rain gauges. The gridata does not
perform extrapolation, so the data outside the location of the rain gauges is assigned a value of nan.
There are other function which can be used to extrapolate the data, which would be discussed later.

Figure 4.6: Gridded rainfall along with the location of rain gauges.

4.5 Evaporation
Based on the energy balance, the evaporation rate (Er) after neglecting the sensible heat flux and
ground heat flux, can be calculated as,

Er =
Rn

lvρw
, (4.3)
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where, Rn is the net radiation, lv is the latent heat of vaporization, and ρw is the water density. The
lv can be approximated as,

lv = 2500−2.36×T, (4.4)

where, T is the temperature in Celcius.

Based on the aerodynamic, the evaporation rate (Ea) can be calculated as,

Ea = B(eas − ea) , (4.5)

where,

B =
0.622k2ρau2

pρw [ln(z2/z0)]
2 , (4.6)

eas is the saturated vapor pressure, ea is the vapor pressure, k is the von Karnman coefficient, u2 is
wind velocity measured at z2 m height, p is the air pressure, and z0 is the roughness height.

Usually, evaporation is calculated by combining the energy balance and aerodynamic method. In
this case the E becomes,

E =
∆

∆+ γ
Er +

γ

∆+ γ
Ea, (4.7)

where, ∆ is the gradient of the saturated vapor pressure curve, and is,

∆ =
4098es

(273.3+T )2 , (4.8)

and, the γ is the psychrometric constant, and is defined as,

γ =
CpKh p

0.622lvKw
, (4.9)

kh and kw are the heat and vapor diffusivities respectively.

Let us first generate the synthetic data using random numbers. We know that np.random.rand
provides uniformly distributed random number over an interval of [0,1]. If we want to get the
uniformly distributed random number over some other range, say [a,b], we can transform the variable
in the following way:

xnew = a+(b−a)∗ xold , (4.10)

where, Xold is uniformly distributed random variable over [0,1], and xnew has the range of [a,b].
The np.random.randn gives normally distributed random variables having zero mean and standard
deviation equal to one. If we are interested in normally distributed random variable having mean µ
and standard deviation equal to σ. We can do the following transformation.

ynew = µ+σ∗ yold , (4.11)

where, ynew is transformed variable having mean equal to µ and standard deviation equal to σ, and
yold is the normally distributed random variable with mean zero and standard deviation equation to
one, as generated by the np.random.randn function.

In the following example, we shall generate variable in their usual range. The comment after the
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variable provides details of the lower and upper range in case of uniformly distributed random vari-
able, mean and standard deviation when the variable is normally distributed.

>>> from __future__ import division
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>>
>>> # generate the synthetic data
>>> Rn = 150+100*np.random.rand(100) # lower bound = 150, upper boun = 250
>>> T = 25+3*np.random.randn(100) # mean = 25, std = 3
>>> Rh = 0.2+0.6*np.random.rand(100) # lower bound = 0.2, upper boun = 0.8
>>> u2 = 3+np.random.randn(100) # mean = 3, std = 1
>>>
>>> # define constants
>>> rho_w = 997; rho_a = 1.19; p = 101.1e3; z2 = 2
>>> z0 = 0.03e-2; k = 0.4; Cp = 1005

Now, we apply the energy balance based method to estimate the evaporation.

>>> lv = (2500-2.36*T)*1000 # multiplied by thousand to convert from KJ/kg to J/kg
>>> Er = 200/(lv*997)
>>> Er *= 1000*86400 # convert from m/s to mm/day

We are using multiplication and assignment operator to convert the units. We could have done this by
simply multiplication also i.e. Er = Er*1000*86400. The multiplication and assignment operator
is fast, as it does not create any temporary variable in the memory. In fact all the assignment operator
are faster than simple operator, and should be used whenever there is scope to use them. Now we
estimate the evaporation using the aerodynamic method.

>>> B = 0.622*k**2*rho_a*u2/(p*rho_w*(np.log(z2/z0))**2)
>>> e_s = 611*np.exp(17.27*T/(237.3+T))
>>> e_a = Rh*e_s
>>> Ea = B*(e_s-e_a)
>>> Ea *= 1000*86400 # convert from m/s to mm/day

Now, we combine energy balance and aerodynamic method to get improved estimate of the evapo-
ration.

>>> gamma = Cp*p/(0.622*lv) # since kh/kw = 1, hence they are dropped form eq.
>>> delta = 4098*e_s/(237.3+T)**2
>>> w = delta/(delta+gamma)
>>> E = w*Er + (1-w)*Ea

Now, we have got four important variables; evaporation using energy balance method (Er), evap-
oration using aerodynamics method (Ea), combined evaporation (E), and the ratio of evaporation
from energy balance method by combined method (Er/E). We can plot these four variables in four
different plot, or we can put them in one figure by making figure into four section. subplot is such
a function to make figure into subsection. The first argument to subplot is the desired number of
rows, second argument is the desired numbers of columns in the figure. The third argument is the
position of subplot in the figure, which is measured from left to right and top to bottom.
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>>> plt.clf()
>>> plt.subplot(2,2,1)
>>> plt.plot(Er)
>>> plt.xlabel('Time')
>>> plt.ylabel('Er')

>>> plt.subplot(2,2,2)
>>> plt.plot(Ea)
>>> plt.xlabel('Time')
>>> plt.ylabel('Ea')

>>> plt.subplot(2,2,3, axisbg='y')
>>> plt.plot(E)
>>> plt.xlabel('Time')
>>> plt.ylabel('E')

>>> plt.subplot(2,2,4, axisbg='g')
>>> plt.plot(w)
>>> plt.xlabel('Time')
>>> plt.ylabel('Er/E')
>>> plt.savefig('/home/tomer/articles/python/tex/images/E.png')

The estimated Er, Ea, E and Er/E are shown in the Fig. 4.7. We have additionally used the argument
axisbg to define the background color for the subplots.

Figure 4.7: The estimated Er, Ea, E and Er/E.

In the Fig. 4.7, the ylabel of subplot 4 is overlapping with the subplot 3. This can be corrected by
changing the wspace. Which is demonstrated below. Fig. 4.8 shows the improved plot.

>>> fig = plt.figure()
>>> fig.subplots_adjust(wspace=0.6)
>>> plt.subplot(2,2,1)
>>> plt.plot(Er)
>>> plt.xlabel('Time')
>>> plt.ylabel('Er')
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>>>
>>> plt.subplot(2,2,2)
>>> plt.plot(Ea)
>>> plt.xlabel('Time')
>>> plt.ylabel('Ea')
>>>
>>> plt.subplot(2,2,3, axisbg='y')
>>> plt.plot(E)
>>> plt.xlabel('Time')
>>> plt.ylabel('E')
>>>
>>> plt.subplot(2,2,4, axisbg='g')
>>> plt.plot(w)
>>> plt.xlabel('Time')
>>> plt.ylabel('Er/E')
>>> plt.savefig('/home/tomer/articles/python/tex/images/corr_E.png')

Figure 4.8: Estimated Er, Ea, E and Er/E with corrected ylabel.

4.6 Infiltration

The cumulative infiltration given by Green-Ampt method is written as,

F(t)−ψ∆θ ln
(

1+
F(t)
ψ∆θ

)
= Kt, (4.12)

where, F(t) is the cumulative infiltration after t time, ψ is the suction head , ∆θ is given as,

∆θ = (1−Se)θe, (4.13)

wherein, Se is the degree of saturation, and θe is the effective porosity, K is the hydraulic conductiv-
ity. To solve the equation using iterative procedure, the Eq. 4.12 is rewritten as,

F(t) = ψ∆θ ln
(

1+
F(t)
ψ∆θ

)
+Kt. (4.14)
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We use while function to iterate till we achieve required accuracy. The iterated value of F are stored
using the append method. append appends the array by one one item, and puts the input variable
into it.

>>> from __future__ import division
>>> import numpy as np

>>> # define the variables
>>> theta_e = 0.486
>>> psi = 16.7
>>> K = 0.65
>>> S_e = 0.3
>>> t = 1
>>>
>>> #calculate dtheta
>>> dtheta = (1-S_e)*theta_e
>>>
>>> # initial guess of F
>>> F_old = K*t
>>> epsilon = 1
>>> F = []
>>> while epsilon > 1e-4:
>>> F_new = psi*dtheta * np.log(1+F_old/(psi*dtheta)) + K*t
>>> epsilon = F_new - F_old
>>> F_old = F_new
>>> F.append(F_new)

Now, we make a plot of the iterated value of F to see how F is getting updated with iterations. We
are also using -ok in the plot function. The -o represents the continuous line with filled dots, and
k tells that the color of plot is black. We are also specifying the font size for xlabel and ylabel.
We have used ‘25’ for ylabel and ‘20’ for xlabel, just to demonstrate that different font sizes can
be used for different texts. Of course, there is no need to define a different font size for ylabel and
xlabel. The same argument fontsize can be used to define the font size for legend also.

>>> import matplotlib.pyplot as plt
>>> plt.plot(F,'-ok')
>>> plt.xlabel('Number of iteration',fontsize=25)
>>> plt.ylabel('F',fontsize=20)
>>> plt.savefig('/home/tomer/articles/python/tex/images/F.png')

Fig. 4.9 shows the variation of the F over time. The F is becoming almost constant after approxi-
mately 12 iterations.

4.7 Surface water

The flow depth in a rectangular channel is given by,

Q =
1.49

n
S1/2

o
(By)5/3

(B+ y)2/3 , (4.15)
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Figure 4.9: The variation of the F with iterations.

where, Q is the flow, n is the Manning’s coefficient, S0 is slope of water surface, B is the width
of channel, and y is the flow depth. This is a nonlinear equation in y, and the explicit solution of
this is not yet found. This can be solved iteratively like in the last section, or using methods like
Newton-Raphson. In this, we will solve using the fmin function of the Scipy.optimize library.
First we will import required libraries. Then we will define a function that takes the flow depth (y)
as input and gives the error in the flow estimated based on this y and the given Q. We are taking
absolute value of error, other options are like square of error etc. After specifying the function, we
can give this function as a input to fmin and some initial guess of the y.

>>> # import required modules
>>> from __future__ import division
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.optimize import fmin
>>>
>>> # define the variables
>>> n = 0.015
>>> S0 = 0.025
>>> Q = 9.26
>>> B = 2
>>>
>>> # define the flow function
>>> def flow(y):
>>> Q_estiamted = (1.49/n)*(S0**0.5)*((B*y)**(5/3))/((B+y)**(2/3))
>>> epsilon = np.abs(Q_estiamted - Q)
>>> return epsilon
>>>
>>> y_optimum = fmin(flow,0.5)

fmin will give us the required y value. We can also get details of the iterations, and error value at
final iterations. We use print function to see the details. The output is given below.

>>> print(y_optimum)
Optimization terminated successfully.

Current function value: 0.000078



4.8. River Routing–Muskingum method 41

Iterations: 13
Function evaluations: 26

[ 0.52770386]

The optimization terminated successfully, i.e. the required accuracy was achieved within the default
maximum number of iterations allowed. The output tells that it took 13 iterations to achieve the
required accuracy, and that the function was evaluated 26 times in the process.

4.8 River Routing–Muskingum method

The outflow using Muskingum method is calculated as,

Q j+1 =C1I j+1 +C2I j +C3Q j. (4.16)

We are given the value of C1, C2, C3, and Q0, and we are interested in getting the value of Q from
time (t = 0) to (t = 19). In this example, first we define variables, and then we iterate using for
loop. The list I is quiet long, and will not fit into one line. In such cases we can go to second line
also, the beginning of brackets tells Python that list has started, and the end brackets tells Python
that this is end of the list. We can write list in as many line as we want, no need to specify anything
else to tell Python that list is defined in multi-line.

>>> from __future__ import division
>>> import numpy as np
>>> # define the variables
>>> I = np.array([93, 137, 208, 320, 442, 546, 630, 678, 691, 675, 634, 571, 477,
>>> 390, 329, 247, 184, 134, 108, 90])
>>> C1 = 0.0631
>>> C2 = 0.3442
>>> C3 = 0.5927
>>>
>>> Q = np.empty(20) # define the empty array
>>> Q[0] = 85 # initial value of Q
>>>
>>> # loop over
>>> for i in range(1,20):
>>> Q[i] = C1*I[i] + C2*I[i-1] + C3*Q[i-1]

Now we can use matplotlib.pyplot to plot the inflow and outflow. -* means a continuous line
with starts, and --s means dashed line with square.

>>> import matplotlib.pyplot as plt
>>> plt.plot(I, '-*', label='Inflow')
>>> plt.plot(Q, '--s', label='Outflow')
>>> plt.xlabel('Time', fontsize=20)
>>> plt.ylabel('Flow', fontsize=20)
>>> plt.legend()
>>> plt.savefig('/home/tomer/articles/python/tex/images/muskingum.png')
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Figure 4.10: The variation of inflow and outflow with time.

Fig. 4.10 shows the variation of inflow and outflow with time. The outflow shows a lag with respect
to inflow, and the peak in the outflow is slightly lesser than the inflow.



Chapter 5

Statistics

When there is not a clear understanding of the physics process, or the variables required to do
physical modelling are not available, then statistics plays a vital role. There are various modules
available in python to deal with statistics, the most commonly used is scipy.stats. Additionally
there is one more useful modules statistics, which can be downloaded from http://bonsai.
hgc.jp/˜mdehoon/software/python/Statistics/manual/index.xhtml. statistics is not
available for download using the pip, and hence you should download it using internet browser, and
then install it using either pip or python setup.py install.

5.1 Empirical distributions
Most of hydrological variables are continuous, but because of our measurement capability we mea-
sure them discretely. The classification of discrete data using bins, provides mean to treat the discrete
data as continuous. Visualization of the underlying distribution of data is done by plotting the His-
togram. The histogram depicts the frequency over discrete intervals (bins). So let us begin with
histogram. In the following example, first we will generate some synthetic data, and then compute
and plot the histogram.

>>> from __future__ import division
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as st
>>>
>>> x = np.random.randn(100) # generate some synthetic data
>>>
>>> # compute histogram
>>> n, low_range, binsize, extrapoints = st.histogram(x)
>>> upper_range = low_range+binsize*(len(n)-1)
>>> bins = np.linspace(low_range, upper_range, len(n))

The st.histogram provides the number of bins in each interval (n), lower range of the bin
(low range), width of the bins (binsize), and points not used in the calculation of histogram. Since
bin size is same for all bins, Python provides only one bin size. We used lower range of bin and
bin size to first compute the upper range of the bin, and then compute the mid value for all the bins.
Now we can use bar to make the histogram. We shall also define the width and color of the bars.

http://bonsai.hgc.jp/~mdehoon/software/python/Statistics/manual/index.xhtml
http://bonsai.hgc.jp/~mdehoon/software/python/Statistics/manual/index.xhtml
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>>> plt.bar(bins, n, width=0.4, color='red')
>>> plt.xlabel('X', fontsize=20)
>>> plt.ylabel('number of data points in the bin', fontsize=15)
>>> plt.savefig('/home/tomer/articles/python/tex/images/hist.png')

The histogram of the data is shown in Fig. 5.1. In this example, because we have just created
100 random number from the normal distribution, the histogram is not showing the behaviour that
normal distribution should show.

Figure 5.1: The Histogram of x.

Each bar in histogram tells us that how many time the data was in particular bin. A better way to
look at the behaviour of data is to look into relative histogram, which tells us about the probability
with which data was in some range. The relative histogram or relative frequency is obtained by
dividing the frequency in each bin by the sum of frequencies in all the bins. The relative histogram
represents the probability of data occurring in the bins. Either we can use the histogram function
to first compute histogram, and then divide by total number of frequency, or we can directly use
the relfreq function. relfreq provides the relative frequency, along with other output which are
similar to that of histogram.

>>> relfreqs, lowlim, binsize, extrapoints = st.relfreq(x)
>>> plt.bar(bins, relfreqs, width=0.4, color='magenta')
>>> plt.xlabel('X', fontsize=20)
>>> plt.ylabel('Relative frequencies', fontsize=15)
>>> plt.savefig('/home/tomer/articles/python/tex/images/relfreq.png')

Because we are using the same x that was used in previous example, hence we are not re-calculating
the bins. In this bar plot, we are using magenta color. The different color of plot, is just to make
you familiar with colors and font sizes. And, it does not mean that we should use different color for
relative frequency diagram than the histogram; nothing prevents us from using the same color.

The relative histogram is shown in Fig. 5.2. The relative histogram tells us how experimental
data behaves; how many times (or with what probability) the data was in some range. The relative
histograms only tell about experimental data, about the data we have. What about the data we are
going to get into future? The PDF is a better indicator to say something about the future data.
The probability density function (pdf) of a random variable is a function that describes the relative
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Figure 5.2: The relative histogram of x.

likelihood for this random variable to occur at a given point. The probability for the random variable
to fall within a particular region is given by the integral of this variables density over the region.
The probability density function is non-negative everywhere, and its integral over the entire space
is equal to one. We can divide the relative frequency by the bin size, and get the pdf. A simple
way to compute pdf is to use hist function. hist generates the plot, and also returns the value of
pdf over each bin. The number of bins are controlled by giving second argument, in the following
example it is set at 10. The bins provide the lower and upper ranges of the bin, hence its length
is one extra than the number of bins. Apart from the color we are specifying alpha value to hist
function. alpha value controls the transparency of the plot; 0.0 means fully transparent and 1.0 is
fully opaque. Fig. 5.3 shows the bar plot of the PDF.

>>> n, bins, patches = plt.hist(x, 10, normed=1, facecolor='yellow', alpha=0.5)
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.savefig('/home/tomer/articles/python/tex/images/pdf.png')

Figure 5.3: The pdf of x.

The cumulative distribution function (CDF) describes the probability that a real-valued random vari-
able X with a given probability distribution will be found at a value less than or equal to x. cumfreq
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provides cumulative frequency of the data, which can be used to compute the CDF. If we divide cu-
mulative frequency by the total frequency, we get the CDF. The last value of cummulative frequency
is equal to the total frequency, hence we are using this to compute CDF. The CDF is shown in Fig.
5.4.

>>> cumfreqs, lowlim, binsize, extrapoints = st.cumfreq(x)
>>> plt.bar(bins[:-1], cumfreqs/cumfreqs[-1], width=0.4, color='black', alpha=0.45)
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('CDF', fontsize=15)
>>> plt.savefig('/home/tomer/articles/python/tex/images/cdf.png')

Figure 5.4: The CDF of x.

We can use ECDF function of the scikits library to directly estimate the empirical cumulative
distribution function (ECDF). The information about scikits is give at http://pypi.python.
org/pypi/scikits.statsmodels. The empirical distribution function (CDF) is the cumulative
distribution function associated with the empirical measure of the sample. This cdf is a step function
that jumps up by 1/n at each of the n data points. The empirical distribution function estimates
the underlying cdf of the points in the sample. In the previous example, we have estimated CDF
(ECDF) after classifying data into some bins. This means, we assumed that the data behaves in a
statistical similar way over some small range. We can estimate CDF without making this assumption
also, which would be done using ECDF function. The output form ECDF function is a object which
store the value of data and their corresponding ECDF. The data is retrieved using ecdf.x and their
corresponding ECDF is retrieved using ecdf.y. The ecdf is the name of variable that you have
defined to store the output of ECDF function, if you use some other name, you need to use same
name to retrieve x and y attributes.

>>> import numpy as np
>>> import scikits.statsmodels.api as sm
>>> import matplotlib.pyplot as plt
>>>
>>> # generate some data
>>> data = np.random.randn(100)
>>>
>>> # estimate ecdf
>>> ecdf = sm.tools.tools.ECDF(data)

http://pypi.python.org/pypi/scikits.statsmodels
http://pypi.python.org/pypi/scikits.statsmodels
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We should plot ECDF as a step plot, because every ECDF is over some small interval. The ECDF
plot is shown in Fig. 5.5.

>>> plt.step(ecdf.x, ecdf.y)
>>> plt.xlabel('data', fontsize=20)
>>> plt.ylabel('Empirical CDF', fontsize=15)
>>> plt.savefig('/home/tomer/articles/python/tex/images/ecdf.png')

We can also use ecdf to evaluate ECDF at any value of data. Let us evaluate and print value of
ECDF at some data point (say at 0).

>>> print(ecdf(0))
0.48999999999999999

Figure 5.5: The empirical CDF estimated using ordinary method.

The empirical CDF estimated using the method mentioned above results in the step function, which
does not look so nice. A better way of estimating ECDF is by using kernel functions. This can be
done by statistics module. The statistics library provides functions to estimate PDF and CDF
using various kernel functions. cpdf function is used for estimating CDF. We have also defined the
name of kernal (Epanechnikov). The available kernal are given at website of library. Inside legend
we are defining location (loc) of the legend as best, which means Python will try to put the legend
in the way, as to minimize the interference with plot. The resulted graph after using this curve is
shows in Fig. 5.6. It is evident from this figure, that this shows a smoother variation compared to
ordinary method of ECDF estimation.

>>> import statistics
>>> y,x = statistics.cpdf(data, kernel = 'Epanechnikov')
>>> plt.plot(ecdf.x, ecdf.y, label='Ordinary')
>>> plt.plot(x, y, label='Kernel')
>>> plt.xlabel('data', fontsize=20)
>>> plt.ylabel('Empirical CDF', fontsize=15)
>>> plt.legend(loc='best')
>>> plt.savefig('/home/tomer/articles/python/tex/images/kernel.png')
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Figure 5.6: Comparison of the ECDF estimated using ordinary method and based on kernal func-
tions.

5.2 Theoretical distributions

Theoretical distributions are based upon mathematical formulas rather than empirical observations.
There are various types of theoretical distributions, commonly used in hydrology are: Normal, Uni-
form, Exponential, Chi, Cauchy. The parameters of distributions are termed as location, scale, and
shape parameter. The location parameter is the one, who change the location of pdf without affecting
other attributes. Shape parameter is the one, who change the shape of distribution without affecting
other attributes. The parameter which stretch or shrink the distribution is called the scale parameters.

First we will generate normally distributed random variables. The input required for this are location
and scale parameter, which are mean and standard deviation in case of normal distribution. We can
also use np.random.randn to generate normally distributed random variables, but scipy.stats
provides many other utilities (methods). So we shall use scipy.stats library.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as st
>>>
>>> # generate instances of normaly distributed random variable
>>> rv1 = st.norm(loc=0, scale=5)
>>> rv2 = st.norm(loc=0, scale=3)
>>> rv3 = st.norm(loc=0, scale=7)

Now these instances of variables can be used to evaluate PDF at any value. In the following example,
we are computing pdf from -50 to 50 for plotting purpose.

>>> x = np.linspace(-50,50, 1000)
>>> y1 = rv1.pdf(x)
>>> y2 = rv2.pdf(x)
>>> y3 = rv3.pdf(x)

Now, we have estimated PDF, it can be plotted. On the x− axis we will keep the variable, and
on the y − axis keep the PDF. We are also supplying additional argument lw to plot function,
which represents line width, and is used to control the widths of the plot. Fig. 5.7 shows the
PDF for three normally distributed random variables with varying scale parameters. The figure
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illustrates the effect of scale parameter on the PDF. In case of less scale parameter, more mass of
pdf is concentrated in the center, as the scale parameter is increasing, the spread is increasing.

>>> plt.plot(x, y1, lw=3, label='scale=5')
>>> plt.plot(x, y2, lw=3, label='scale=3')
>>> plt.plot(x, y3, lw=3, label='scale=7')
>>> plt.xlabel('X', fontsize=20)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.legend()
>>> plt.savefig('/home/tomer/articles/python/tex/images/norm_pdf.png')

Figure 5.7: PDF for normal distribution with various scale parameter.

We can use same instance to also get the CDF. The cdf method gives the CDF at given input,
which could be a scalar or an array. The CDF is shown in Fig. 5.8. CDF also shows the effect of
scale parameter, but PDF provides a better inside. Hence it is always better to plot PDF to see the
behaviour of the distribution or of the empirical data.

>>> y1 = rv1.cdf(x)
>>> y2 = rv2.cdf(x)
>>> y3 = rv3.cdf(x)
>>>
>>> # plot the pdf
>>> plt.clf()
>>> plt.plot(x, y1, lw=3, label='scale=5')
>>> plt.plot(x, y2, lw=3, label='scale=3')
>>> plt.plot(x, y3, lw=3, label='scale=7')
>>> plt.xlabel('X', fontsize=20)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.legend()
>>> plt.savefig('/home/tomer/articles/python/tex/images/norm_cdf.png')

There are other quiet commonly used distributions in hydrology, e.g. Cauchy, Chi, Exponential and
Uniform etc. Let us, play with them also. First we will generate instance of these distributions. Chi
distribution also require degree of freedom parameter apart from the location and scale parameters.
In case of uniform distribution, the location parameter is defined as lower range, and scale parameter
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Figure 5.8: CDF of normal distribution for various scale parameter.

is defined as upper range, which is not true mathematically, and is defined just to make things easier
in providing input to function. Fig.5.9 shows the PDF for these distribution.

>>> rv1 = st.cauchy(loc=0, scale=5)
>>> rv2 = st.chi(2, loc=0, scale=8)
>>> rv3 = st.expon(loc=0, scale=7)
>>> rv4 = st.uniform(loc=0, scale=20)
>>>
>>> # compute pdf
>>> y1 = rv1.pdf(x)
>>> y2 = rv2.pdf(x)
>>> y3 = rv3.pdf(x)
>>> y4 = rv4.pdf(x)
>>>
>>> # plot the pdf
>>> plt.plot(x, y1, lw=3, label='Cauchy')
>>> plt.plot(x, y2, lw=3, label='Chi')
>>> plt.plot(x, y3, lw=3, label='Exponential')
>>> plt.plot(x, y4, lw=3, label='Uniform')
>>> plt.xlabel('X', fontsize=20)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.legend()
>>> plt.savefig('/home/tomer/articles/python/tex/images/pdf_all.png')

We generate a number of random variable from some distribution to represent the distribution. To
explore the impact of the number of samples on the empirical distribution, we will generate random
number from same distribution but with various number of samples, and see how it is effecting
the empirical distribution. We will not be using any quantitative measure to check this, as till this
stage we have not talked about them, rather we will just visualize graphically. First we will play
with normal distribution which is most commonly used distribution. We will use hist function
of the matplotlib.pyplot library to compute the PDF. We are specifying normed=1 for the hist
function, which means that the area of histogram should be made equal to one, and which happens to
be the PDF. We are also using plt.axis to specify the limits of the plot, and we are keeping it same
so that we can compare plots easily. The argument for plt.axis are [xmin,xmax,ymin,ymax]. Fig.
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Figure 5.9: PDF for various distributions.

5.10 shows the empirical and theoretical PDF for sample equal to 100, 1000, 10,000, and 100,000.
It is clear from the figure that as the number of sample are increasing, the empirical distribution is
approaching near to theoretical one. At 100 sample, the distribution is represented very poorly by
the data, while in other case it is relatively better.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as st
>>>
>>> # normal distribution
>>> rv = st.norm(loc=0, scale=5)
>>>
>>> x1 = np.linspace(-20, 20, 1000)
>>> y1 = rv.pdf(x1)
>>>
>>> # compute and plot pdf
>>> fig = plt.figure()
>>> fig.subplots_adjust(wspace=0.4)
>>>
>>> plt.subplot(2,2,1)
>>> x = rv.rvs(size=100)
>>> n, bins, patches = plt.hist(x, 20, normed=1, facecolor='yellow', alpha=0.5)
>>> plt.plot(x1, y1, 'r', lw=3)
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.axis([-20, 20, 0, 0.10])
>>> plt.text(-18,0.08,'n=100')
>>>
>>> plt.subplot(2,2,2)
>>> x = rv.rvs(size=1000)
>>> n, bins, patches = plt.hist(x, 20, normed=1, facecolor='green', alpha=0.5)
>>> plt.plot(x1, y1, 'r', lw=3)
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
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>>> plt.axis([-20, 20, 0, 0.10])
>>> plt.text(-18,0.08,'n=1000')
>>>
>>> plt.subplot(2,2,3)
>>> x = rv.rvs(size=10000)
>>> n, bins, patches = plt.hist(x, 20, normed=1, facecolor='black', alpha=0.5)
>>> plt.plot(x1, y1, 'r', lw=3)
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.axis([-20, 20, 0, 0.10])
>>> plt.text(-18,0.08,'n=10000')
>>>
>>> plt.subplot(2,2,4)
>>> x = rv.rvs(size=100000)
>>> n, bins, patches = plt.hist(x, 20, normed=1, facecolor='magenta', alpha=0.5)
>>> plt.plot(x1, y1, 'r', lw=3)
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.axis([-20, 20, 0, 0.10])
>>> plt.text(-18,0.08,'n=10000')
>>>
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/rand_theo.png')

Figure 5.10: Effect of the number of samples (n) on empirical PDF versus theoretical PDF.

We can also see the effect of the number of sample on the empirical distribution apart from the
normal distribution, say Laplace distribution. In this example, we are controlling the limits of the
axis using the plt.xlim and plt.ylim separately. In case of y−axis we are only defining ymax to
control the maximum limit of the axis, while for x−axis we are defining both the limits. The limit
of the axis could have been fixed using the axis as used in the last example, this is just to show
that we can control only one limit, and leave the other limit to plt. Fig. 5.11 shows the empirical
and theoretical pdf for various number of samples.

>>> rv = st.laplace(loc=0, scale=15)
>>> x1 = np.linspace(-100, 100, 1000)
>>> y1 = rv.pdf(x1)
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>>>
>>> # compute and plot pdf
>>> plt.clf()
>>> fig = plt.figure()
>>> fig.subplots_adjust(wspace=0.4)
>>>
>>> plt.subplot(2,2,1)
>>> x = rv.rvs(size=100)
>>> n, bins, patches = plt.hist(x, 20, normed=1, facecolor='yellow', alpha=0.5)
>>> plt.plot(x1, y1, 'r', lw=3, label='scale=5')
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.ylim(ymax=0.04)
>>> plt.xlim((-100,100))
>>> plt.text(-80,0.035,'n=100')
>>>
>>> plt.subplot(2,2,2)
>>> x = rv.rvs(size=1000)
>>> n, bins, patches = plt.hist(x, 20, normed=1, facecolor='green', alpha=0.5)
>>> plt.plot(x1, y1, 'r', lw=3, label='scale=5')
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.ylim(ymax=0.04)
>>> plt.xlim((-100,100))
>>> plt.text(-80,0.035,'n=1000')
>>>
>>> plt.subplot(2,2,3)
>>> x = rv.rvs(size=1000)
>>> n, bins, patches = plt.hist(x, 20, normed=1, facecolor='black', alpha=0.5)
>>> plt.plot(x1, y1, 'r', lw=3, label='scale=5')
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.ylim(ymax=0.04)
>>> plt.xlim((-100,100))
>>> plt.text(-80,0.035,'n=10000')
>>>
>>> plt.subplot(2,2,4)
>>> x = rv.rvs(size=10000)
>>> n, bins, patches = plt.hist(x, 20, normed=1, facecolor='magenta', alpha=0.5)
>>> plt.plot(x1, y1, 'r', lw=3, label='scale=5')
>>> plt.xlabel('X', fontsize=15)
>>> plt.ylabel('PDF', fontsize=15)
>>> plt.ylim(ymax=0.04)
>>> plt.xlim((-100,100))
>>> plt.text(-80,0.035,'n=100000')
>>>
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/laplace_rand.png')
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Figure 5.11: Effect of the number of samples on empirical PDF versus theoretical PDF for Laplace
distribution.

5.3 The t-test
In statistics, we make hypothesis like two different random variable have the same mean, or have
equal variance, or they follow same distribution. To test these hypothesis, test statistic is derived,
and based on the test statistic, the hypothesis is rejected or accepted. When the test statistic fol-
low a Student’s t distribution, the t-test is used to test hypothesis. This test is available in the
scipy.stats library. Let us first test if the mean of random variable is same as we expected or not.
st.ttest_1samp function is used for this purpose. We will generate normally distributed random
variable having mean equal to 5, and standard deviation equal to 10. And we will test if the mean
of this generated random variable is 5 or not. Because we are talking 1000 number of sample, we
expect that the mean will be approximately equal to 5 most of the time (but not always). The hypo-
thetis is rejected or accepted based on the p-value. The p-value close to one means that hypothesis is
true; a value closer to zero means that the hypothesis is rejected. The significance level (α) is used
to define the threshold, which is often taken as 0.05 or 0.01. If the p-value is greater than this than
we can accept the hypothesis.

>>> import scipy.stats as st
>>> rvs1 = st.norm.rvs(loc=5,scale=10,size=1000)
>>> # t-test
>>> t, p = st.ttest_1samp(rvs1,5)
>>> print(p)
0.882877605761

We see in this example that p-value is 0.88, which means the mean of generated random variable
is close to 5. The t-test is also used to test if the mean of two independent random number is
equal or not. Let us generate two normally distributed random variable with same mean, say 5. We
would like to see if the mean of these two independent random variable is same or not. We can use
st.ttest_ind for this purpose. In this example the p-value is 0.96, which means means are same.

>>> rvs1 = st.norm.rvs(loc=5,scale=10,size=1000)
>>> rvs2 = st.norm.rvs(loc=5,scale=10,size=1000)
>>> # t-test
>>> t, p = st.ttest_ind(rvs1,rvs2)
>>> print(p)
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0.963392592667

In the previous example, we tested two independent sample for the mean. We can also test if the
mean is same or not, when the samples are related or come from same experiment. We can use
st.ttest_rel for this purpose. We get p-value 0.57, which means that the means are same.

>>> rvs1 = st.norm.rvs(loc=5,scale=10,size=1000)
>>> rvs2 = st.norm.rvs(loc=5,scale=10,size=1000)
>>> # t-test
>>> t, p = st.ttest_rel(rvs1,rvs2)
>>> print(p)
0.569900697821

5.4 KS test

KolmogorovSmirnov (KS) test is a non-parametric test to compare the equality of two continuous
one dimensional probability distributions. In this test, we quantify the distance (absolute difference)
between distributions. These two distributions could be two different sample, or one could be sample
and another one a theoretical distribution. Let us test if our generated normal random variable follow
normal distribution or not. st.kstest is the function to to perform KS test.

>>> import numpy as np
>>> import scipy.stats as st
>>> x = np.random.randn(1000)
>>> # KS test
>>> D, p = st.kstest(x,'norm')
>>> print(p)
0.652473310995

We get a p-value equal to 0.65, which means that our generated normally distributed random variable
is in fact normal. We can also test if the the generated uniformly distributed random variable are
not normal by chance. In this we get a p-value equal to 0, which means that our generated random
numbers in this case are not normal.

>>> y = np.random.rand(1000)
>>> D, p = st.kstest(y,'norm')
>>> print(p)
0.0

5.5 The chi square test

We can also compare distribution by comparing their PDFs. In this case we use the Chi square
(χ2) test. In this test, χ2 statistics is computed first, and based on this we say if distributions are
same or not. We can compare sample with the theoretical distribution, or two samples. We will
take two pdfs, in which one is assumed to be observed and another one is expected. We will use
the chisquare function from scipy.stats.mstats library. This function gives χ2 statistics and
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p-value of the test. In the following example, we get a p-value close to zero, it means that these two
frequency comes from different distributions.

>>> from scipy.stats.mstats import chisquare
>>> import numpy as np
>>> f_obs = np.array([10, 15, 20, 30]) # observed pdf
>>> f_exp = np.array([10, 5, 15, 30]) # expected pdf
>>> # chi square test
>>> c, p = chisquare(f_obs, f_exp)
>>>
>>> print(c,p)
(21.666666666666668, 7.6522740548062336e-05)

5.6 Measure of statistical dependence
Often we are interested in knowing if two hydrological variables are dependant or not. In this section,
it will be described to check their statistical dependency. If two variable are statistically dependent,
it does not mean that they are physically also dependent. First we will generate two variables having
different relationship between them. Few with perfect relationship, and few with some noise added.
In the following example, we are creating six variables:

• Perfect linear relationship (y = a+bx),

• Linear relationship with some noise (y = a+bx+ ε),

• Quadratic relationship which is monotonic (y = x2),

• Quadratic relationship with some noise (y = x2 + ε),

• Quadratic relationship but this one is not monotonic (y = (x−5)2), and

• Noise added to previous one (y = (x−5)2 + ε).

Fig. 5.12 shows these variables. Out of the six variable, three have perfect relationship, and three
has some noise. We would expect our measure of statistical dependence to reveal this.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>>
>>> x = np.linspace(0,10)
>>> y1 = 2*x
>>> y2 = y1 + 2*np.random.randn(50)
>>> y3 = x**2
>>> y4 = y3 + 2*np.random.randn(50)
>>> y5 = (x-5)**2
>>> y6 = y5 + 2*np.random.randn(50)
>>>
>>> plt.subplot(2,3,1)
>>> plt.plot(x, y1, '.')
>>> plt.text(2,15,'(a)')
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>>>
>>> plt.subplot(2,3,2)
>>> plt.plot(x, y2, '.')
>>> plt.text(2,15,'(b)')
>>>
>>> plt.subplot(2,3,3)
>>> plt.plot(x, y3, '.')
>>> plt.text(2,80,'(c)')
>>>
>>> plt.subplot(2,3,4)
>>> plt.plot(x, y4, '.')
>>> plt.text(2,100,'(d)')
>>>
>>> plt.subplot(2,3,5)
>>> plt.plot(x, y5, '.')
>>> plt.text(2,20,'(e)')
>>>
>>> plt.subplot(2,3,6)
>>> plt.plot(x, y6, '.')
>>> plt.text(2,25,'(f)')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/corr.png')

Figure 5.12: Different kind of relationship between two variables.

Unfortunately there is no measure to reveal the strength of relationship in case on non-linearty. The
reason for this is that we can have any form of non linear relationship which is not possible for
measure to quantity. Having said that, there are some measure which work well in some case. We
will explore few of them. First begin with Pearson’s correlation coefficient, which provides the
strength of linear relationship. st.pearsonr function can be used to compute Pearson’s correlation
coefficient. This function also gives the p-value, which can be used to quantity the significance of
the relationship. We are using % operator for formatting the output. .2f tells to print the output till
second decimal places.

>>> import scipy.stats as st
>>> r1, p1 = st.pearsonr(x,y1)
>>> r2, p2 = st.pearsonr(x,y2)
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>>> r3, p3 = st.pearsonr(x,y3)
>>> r4, p4 = st.pearsonr(x,y4)
>>> r5, p5 = st.pearsonr(x,y5)
>>> r6, p6 = st.pearsonr(x,y6)
>>>
>>> # print r's
>>> print('%.2f %.2f %.2f %.2f %.2f %.2f')%(r1,r2,r3,r4,r5,r6)
1.00 0.97 0.97 0.96 0.00 -0.02

We get 1.0 for first case, and a value slightly lesser than 1.0 for second case, because we perturbed
the relationship. In third case, we get a value of 0.97, while in reality the relationship is perfect
though not linear. The value is 0 in fifth case, even though the relationship perfect. So we can
conclude that Pearson’s correlation coefficient is good only to measure the linear relationship. Now
we will compute Spearman’s correlation coefficient for all these six cases using st.spearman.

>>> rho1, p1 = st.spearmanr(x,y1)
>>> rho2, p2 = st.spearmanr(x,y2)
>>> rho3, p3 = st.spearmanr(x,y3)
>>> rho4, p4 = st.spearmanr(x,y4)
>>> rho5, p5 = st.spearmanr(x,y5)
>>> rho6, p6 = st.spearmanr(x,y6)
>>>
>>> # print rho's
>>> print('%.2f %.2f %.2f %.2f %.2f %.2f')%(rho1,rho2,rho3,rho4,rho5,rho6)
1.00 0.97 1.00 0.99 0.01 -0.04

Spearman’s correlation coefficient is providing the similar output like one by Spearman’s except that
it is able to recognize the relationship in third and fourth case better. In the third and fourth case,
the relationship was non-linear but monotonic. Spearman’s correlation coefficient is useful measure
when the data has monotonic behaviour. But this is also not working properly in case when the
relationship is well defined, but not monotonic. Kendall’s tau correlation coefficient is a statistics to
measure the rank correlation. Kendall’s tau can be computed using the st.kendalltau function.

>>> tau1, p1 = st.kendalltau(x,y1)
>>> tau2, p2 = st.kendalltau(x,y2)
>>> tau3, p3 = st.kendalltau(x,y3)
>>> tau4, p4 = st.kendalltau(x,y4)
>>> tau5, p5 = st.kendalltau(x,y5)
>>> tau6, p6 = st.kendalltau(x,y6)
>>>
>>> # print tau's
>>> print('%.2f %.2f %.2f %.2f %.2f %.2f')%(tau1,tau2,tau3,tau4,tau5,tau6)
1.00 0.86 1.00 0.95 0.01 -0.05

This provides measure similar to that of Spearman’s correlation coefficient, and is unable to reveal
non-monotonic relationship that we have in fifth and sixth case.
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5.7 Linear regression
Linear regression is an approach to model the relationship between two variables using linear func-
tion. We will use st.linregress function to perform linear regression. We will first generate some
synthetic data using a known linear model, and will also add some noise using normally distributed
random variable. linregress provides correlation, p-value, and standard error of estimate apart
from model coefficients.

>>> import numpy as np
>>> import scipy.stats as st
>>> # generate the data
>>> n = 100 # length of the data
>>> x = np.random.rand(n)
>>> y = 3 + 7*x + np.random.randn(n)
>>> # perform linear regression
>>> b, a, r, p, e = st.linregress(x, y)
>>> print(a,b)
(2.9059642495310403, 7.3015273619236618)

We generated data using linear model (y = 3+ 7x+ ε), while linear regression (y = 2.91+ 7.3x).
The difference in the fitted model and true model, is because of the noise. As you add more noise,
you will see that the fitted model departs more from the reality. Fig. 5.13 shows the true line
(y = 3+ 7x), corrupted measurement (y = 3+ 7x+ ε), fitted line (y = 2.91+ 7.3x), and prediction
interval for the fitted line. The fitted line and true line are matching reasonably. The prediction
interval are also quiet reasonable.

The variance of a predicted Ypred is given by,

σ
2
pred = E[(Ypred − Ŷ )2] = σ

2
ε

(
1+

1
n
+

(X0 −X)2

∑
n
i=1(X −X)2

)
. (5.1)

Where, the σ2
ε is estimated by s2 the classic unbiased estimator of the residual variance. The σ2

pred
is used to generate prediction interval using a Students t distribution with n−2 degrees of freedom
(because s2 is an estimator). The confidence interval around Ypred is given by,

PI = σpred ∗ z (5.2)

where, PI is the prediction interval, z is the value of Students t distribution at α significance level.

>>> eps = y - a - b*x # error of fitting and measured data
>>> x1 = np.linspace(0, 1) # x axis to plot the PI
>>> # variace of fitting error
>>> e_pi = np.var(eps)*(1+1.0/n + (x1-x.mean())**2/np.sum((x-x.mean())**2))
>>> # z value using the t distribution and with dof = n-2
>>> z = st.t.ppf(0.95, n-2)
>>> # prediction interval
>>> pi = np.sqrt(e_pi)*z
>>> zl = st.t.ppf(0.10, n-2) # z at 0.1
>>> zu = st.t.ppf(0.90, n-2) # z at 0.9
>>> ll = a + b*x1 + np.sqrt(e_pi)*zl # 10 %
>>> ul = a + b*x1 + np.sqrt(e_pi)*zu # 90 %
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Finally, we can plot the true line, fitted line, measurement corrupted with noise and prediction inter-
vals.

>>> import matplotlib.pyplot as plt
>>> plt.plot(x,y,'ro', label='measured')
>>> plt.plot(x1,ll,'--', label='10%')
>>> plt.plot(x1,ul,'--', label='90%')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend(loc='best')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/lin_regress.png')

Figure 5.13: The fitted line along with the uncertainty intervals.

5.8 Polynomial regression

We can do the polynomial regression using the np.polyfit. This provides the fitted coefficients.
We can define the order of polynomial as third argument to the np.polyfit function. First, we are
generating a second degree polynomial (y = 1+2x−3x2), then we are adding noise into it.

>>> import numpy as np
>>> # generate data
>>> x = np.linspace(0,10)
>>> y = 1 + 2*x - 3*x**2 + 15*np.random.randn(50)
>>> # fit the polynomial
>>> z = np.polyfit(x,y,2)
>>> print(z)
[-3.03571947 1.34263078 4.58790632]

The np.polyfit function is providing fitted polynomial as y = 4.58+ 1.34x− 3.03x2, while the
coefficient of true polynomials were different. Only the third parameter is computed reasonably.
Other two parameters differs a lot compared to the true one. Let us look into the behaviour of
fitted polynomials compared to the true polynomial. np.poly1d function is used to evaluate the
polynomial using the fitted coefficient returned by np.polyfit. Fig. 5.14 shows the resulted plot.
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Though the fitted coefficients differed than real coefficients, but the fitted polynomial is quiet close
to the true one. The parameter associated with second degree was computed quiet reasonably by the
np.polyfit, this means that this is the most sensitive parameters compared to other one.

>>> import matplotlib.pyplot as plt
>>> # evaluate polynomial
>>> p = np.poly1d(z)
>>> z_true = np.array([-3, 2, 1]) # coefficient of true polynomial
>>> p_true = np.poly1d(z_true) # true polynomial
>>> # plot
>>> plt.plot(x, y,'.r', label='noisy data')
>>> plt.plot(x, p_true(x), label='True curve')
>>> plt.plot(x, p(x), label='Fitted curve')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend()
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/cuve_regre.png')

Figure 5.14: Fitted curve along with true curve, and data with noise.

5.9 Interpolation

There are various way of doing interpolation. Commonly used methods are piecewise linear and
non-linear, splines, and radial basis functions. In this section, we will use piecewise linear and
radial basis function to interpolate the data.

We will first generate few data points having exponential relationship. Then we will interpolate
using interp1d function of scipy.interpolate library. This function returns an object, which
can be used later to evaluate the fitted piecewise linear curve at required data points. Fig. 5.15
shows the fitted piecewise polynomial along with the data used to generate it.

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.interpolate import interp1d
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>>> # generate data
>>> x = np.linspace(0,1,5)
>>> y = np.exp(-x)
>>> f = interp1d(x, y)
>>> xnew = np.linspace(x.min(), x.max())
>>> ynew = f(xnew) # use interpolation function returned by `interp1d`
>>> # plot
>>> plt.plot(x, y, 'ro', label='y')
>>> plt.plot(xnew, ynew, '-', label='ynew')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend()
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/inter.png')

Figure 5.15: Interpolated curve versus the measured data.

The inerp1d does not do extrapolation i.e. it will issue an error if we want to fit the data outside
input data range. We can suppress the error by specifying the bounds_error=None argument. In
this case, it will give nan, if we want to interpolate outside input data range. To interpolate outside
the input data range, we can use Rbf function of the scipy.interpolate library. Remember in
section 4.4, the interpolated data was only in the range of location of input data. We will use Rbf
function to interpolate outside these range. We are using plt.imshow to make the 2D plot. Fig.
5.16 shows the plot. IT is clear from the figure, that it is able to interpolate outside input data range
also.

>>> x = np.random.rand(5)
>>> y = np.random.rand(5)
>>> pet = 2+2*np.random.rand(5)
>>>
>>> rbfi = sp.interpolate.Rbf(x, y, pet) # radial basis function interpolation instance
>>>
>>> xi = np.linspace(0,1)
>>> yi = np.linspace(0,1)
>>> XI, YI = np.meshgrid(xi,yi) # gridded locations
>>>
>>> di = rbfi(XI, YI) # interpolated values



5.10. Autocorrelation 63

>>>
>>> plt.imshow(di, extent=(0,1,0,1), origin='lower')
>>> plt.scatter(x,y, color='k')
>>> plt.xlabel('X')
>>> plt.ylabel('Y')
>>> plt.axis((0,1,0,1))
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/rbf.png')

Figure 5.16: Interpolation in 2D.

5.10 Autocorrelation
Autocorrelation is the correlation of a signal with itself. This tells the how a signal is related in
time or space. This can be used to see the periodicity in the signal. To demonstrate this, we will
first generate a signal using sine with a periodicity of 4π and magnitude of 2. Fig. 5.17 shows
the signal in upper panel, and autocorrelation in lower panel. The autocorrelation is plotted using
the plt.acorr function. We have shown the grid in the plot using the plt.grid function. The
horizontal lines at 0 and e−1 are plotted using the plt.axhline. Autocorrelation is showing a nice
periodic behaviour with a periodicity of 4π.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = 2*np.sin(np.arange(100)/2.0) # periodic signal
>>> x += np.random.randn(len(x)) # corrupted with noise
>>>
>>> plt.subplot(2,1,1)
>>> plt.plot(x, '-s')
>>> plt.ylabel('x', fontsize=20)
>>> plt.grid(True)
>>> plt.xlabel('Time')
>>>
>>> plt.subplot(2,1,2)
>>> c = plt.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
>>> plt.grid(True)
>>> plt.axhline(0, color='black', lw=2)



64 Chapter 5. Statistics

>>> plt.axhline(1/np.exp(1), color='red')
>>> plt.ylabel('Autocorrelation')
>>> plt.xlim(xmin=0,xmax=100)
>>> plt.xlabel('Lag')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/corr_0.png')

Figure 5.17: A plot showing 100 random numbers generated using sine function, and an autocorre-
lation of the series.

Autocorrelation function is also used to compute the correlation length. Correlation length is the
distance from a point beyond which there is no further correlation of a physical property associated
with that point. Mathematically, the correlation length is the lag at which autocorrelation is equal to
e−1, which is shown by a horizontal red line in the plot. Let us make a plot with higher periodicity
to compute correlation length. The resulted plot is shown in Fig. 5.18. Graphically we see that
correlation is approximately 9.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = 2*np.sin(np.arange(100)/10.0) # periodic signal
>>> x += np.random.randn(len(x)) # corrupted with noise
>>>
>>> plt.subplot(2,1,1)
>>> plt.plot(x, '-s')
>>> plt.ylabel('x', fontsize=20)
>>> plt.grid(True)
>>> plt.xlabel('Time')
>>>
>>> plt.subplot(2,1,2)
>>> c = plt.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
>>> plt.grid(True)
>>> plt.axhline(0, color='black', lw=2)
>>> plt.axhline(1/np.exp(1), color='red')
>>> plt.ylabel('Autocorrelation')
>>> plt.xlim(xmin=0,xmax=100)
>>> plt.xlabel('Lag')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/corr_1.png')
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Figure 5.18: A plot showing 100 random numbers generated using sine function, and an autocorre-
lation of the series.

To precisely determine the correlation length, we would be fitting a interpolation function between
lag and correlation length, and then determine the lag where autocorrelation becomes e−1. The
plt.acorr function return lags and autocorrelation at these lags. First we will assign lags and
correlation to separate variables. We also print the lags to see what is inside it.

>>> lags = c[0] # lags
>>> auto_corr = c[1] # autocorrelation
>>> print(auto_corr)
[-50 -49 -48 -47 -46 -45 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35 -34 -33
-32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15
-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50]

The acorr provides positive and negative lags. We don’t need both, we can get rid of it by giving a
index which is in boolean format and is obtained by using the statement lags>=0. We also remove
the autocorrelation array which corresponds to negative lags.

>>> auto_corr = auto_corr[lags>=0]
>>> lags = lags[lags>=0]

Now, we need the autocorrelation at two point, one just above the threshold, and one just below the
threshold. We get their indices by counting how many times the auto correlation is above threshold.

>>> n = sum(auto_corr>np.exp(-1))
>>> print(n)
9

One point is at 8th indices, and another is at 9th indices. Now, we can use interp1d to get the value
of exact lag when autocorrelation is equal to threshold. This provides the correlation length which
is 8.65.

>>> f = interp1d([auto_corr[n], auto_corr[n-1]], [lags[n], lags[n-1]])
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>>> corr_len = f(np.exp(-1))
array(8.64725236367028)

5.11 Uncertainty Intervals

Many times, we get a number of ensembles of the data. And we want to see the behaviour of these
ensemble. Let us first begin by generating ensemble, and then plotting them. In this example, first
we are generating a signal with sin behaviour. Then, we are using vstack to stack the data i.e. to
make 2 dimensional array using many one dimensional arrays. After this, we mix some noise in
the data so that ensemble looks slightly different. We are transposing the data using T attributes for
plotting, otherwise it will plot ensemble on x−axis instead of time.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as st
>>>
>>> # generate some data
>>> x = 100*np.sin(np.linspace(0,10,100))
>>> X = np.vstack([x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x])
>>> e = 10*np.random.randn(20,100)
>>>
>>> X_err = X+e
>>>
>>> plt.plot(X_err.T, 'k')
>>> plt.xlabel('Time')
>>> plt.ylabel('X')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/X_err.png')

Figure 5.19: Various ensemble of data.

Fig. 5.19 shows the plot of these ensembles. We see that all the ensemble are behaving similar to
each one. But we can not infer anything more on the behaviour of ensemble using this plot. A better
way to visualize ensemble is by using the various uncertainty intervals along with the mean. We can
compute the uncertainty interval at various percentile using the st.scoreatpercentile function.
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We are computing 10th, 50th, and 90th percentile. 50th percentile is the median. We are plotting
median than the mean, because if there are some outliers in the data, median provided better insight
into the behaviour of ensemble. Fig. 5.20 shows the median, 10th, and 90th of ensemble. Using this
plot, we can make out that the spreads of the ensemble is not same everywhere; it is relatively more
in the peak and valley and less elsewhere.

>>> ll = st.scoreatpercentile(X_err, 10) # 10th percentile
>>> ml = st.scoreatpercentile(X_err, 50) # 50th percentile
>>> ul = st.scoreatpercentile(X_err, 90) # 90th percentile
>>>
>>> plt.plot(ml, 'g', lw=2, label='Median')
>>> plt.plot(ul, '--m', label='90%')
>>> plt.plot(ll, '--b', label='10%')
>>> plt.xlabel('Time')
>>> plt.ylabel('X')
>>> plt.legend(loc='best')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/X_uncer.png')

Figure 5.20: The median, and uncertainty intervals of data estimated from ensemble.

The uncertainty intervals could be plotted by shaded regions. The plt.fill_between provides the
option of filling color in between two array, and can be used to make a shaded regions.

>>> plt.plot(ml, 'g', lw=2, label='Median')
>>> plt.fill_between(range(100), ul, ll, color='k', alpha=0.4, label='90%')
>>> plt.xlabel('Time')
>>> plt.ylabel('X')
>>> plt.legend(loc='best')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/X_uncer_shade.png')

Fig. 5.21 shows the plot of uncertainty using the shaded region.
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Figure 5.21: The median, and uncertainty intervals of data estimated from ensemble. The uncer-
tainty intervals are shown using shaded region.



Chapter 6

Spatial Data

6.1 Types of spatial data

Raster and vector are the two basic data structures for storing and manipulating images and graphics
data in GIS (Geographic Information Systems). Raster image comes in the form of individual
pixels, and each spatial location or resolution element has a pixel associated where the pixel value
indicates the attribute, such as color, elevation, or an ID number. Vector data comes in the form of
points and lines, that are geometrically and mathematically associated. Points are stored using the
coordinates, for example, a two-dimensional point is stored as (x, y). Lines are stored as a series of
point pairs, where each pair represents a straight line segment, for example, (x1, y1) and (x2, y2)
indicating a line from (x1, y1) to (x2, y2).

We will create some raster data using some mathematical function, and then also add noise into
it. We will keep both the data (with noise, and without noise) for future use. np.mgrid is used to
create gridded points. The data is plotted using plt.matshow function, which is a simple function
to visualize a two dimensional array. Fig. 6.1 shows the data without noise, data corrupted with
noise is shown in Fig. 6.2. The data without noise shows a systematic behaviour, while it is blurred
in the data added with noise.

>>> import numpy as np
>>> # generate some synthetic data
>>> X, Y = np.mgrid[0:101, 0:101]
>>> data = np.sin((X**2 + Y**2)/25)
>>> data_noisy = data + np.random.random(X.shape)
>>>
>>> # plot the data
>>> plt.matshow(data)
>>> plt.colorbar()
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/spatial_data.png')
>>>
>>> plt.matshow(data_noisy)
>>> plt.colorbar(shrink=0.5)
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/spatial_data_noisy.png')
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Figure 6.1: Synthetic data created.

Figure 6.2: Synthetic data perturbed with noise.

We can also generate a vector data with using some points. Fig. 6.3 shows the vector data.

>>> # vector data
>>> vector_x = [10,7,24,16,15,10]
>>> vector_y = [10,23,20,14,7,10]
>>>
>>> #plot vector data
>>> plt.clf()
>>> plt.plot(vector_x, vector_y)
>>> plt.axis((5,25,5,25))
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/vect.png')
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Figure 6.3: Vector data.

The geospatial data can be classified into two major parts. In the first part we have information
about some feature, like a two dimensional array showing the spatial variation in elevation etc. In
the second part, we have information about the co-ordinates of the data. A typical processing chain
for geo-spatial data is given in flow chart 6.4. We have the geospatial data, and we extract the feature
information and co-ordinate information separately, then we process them separately, and finally
after processing we again combine them. The processing for feature information could be some
mathematical operation, and for co-ordinate information, it could some co-ordinate transformation
etc.

Geospatial data

Co-ordinate
informationFeature information

Processing Processing

Processed
geospatial data

Figure 6.4: Flowchart showing a typical chain for processing the geospatial data.
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6.2 Geoinformation
The raster data can be geo-referenced either by specifying the GeoTransform variable, or by spec-
ifying the GCPs for the image. The GeoTransform (GT ) is related to the geographical co-ordinates
in the following way,

Xgeo = GT [0]+Ximage ∗GT [1]+Yimage ∗GT [2], (6.1)

Ygeo = GT [3]+Ximage ∗GT [4]+Yimage ∗GT [5], (6.2)

where, subscript geo refers to the global co-ordinates, and image refers to the image co-ordinates,
i.e. pixel and line number of image. The number in the square bracket ([]) represents the indices of
the GT variables. X and Y are co-ordinates. GT [2] and GT [4] represents the orientation of the im-
age, with respect to the X and Y of geo, and becomes zero if the image is north up. GT [1] represents
pixel width, and GT [5] represents the pixel height. GT [0] and GT [3] is the position of the top left
corner of the top left pixel of the raster. It should be noted that the pixel/line coordinates in the above
are from (0.0,0.0) at the top left corner of the top left pixel to at the bottom right corner of the bot-
tom right pixel. The pixel/line location of the center of the top left pixel would therefore be (0.5,0.5).

The information related to the geo-referencing can be specified by specifying the control points.
Control points should contains minimally the GCPPixel (pixel number of image), GCPLine (line
number of image), GCPX (X co-ordinate), GCPY (Y co-ordinate), and GCPZ (Z co-ordinate). The
(Pixel,Line) position is the GCP location on the raster. The (X,Y,Z) position is the associated
georeferenced location with the Z often being zero. Usually polynomials are used to transform the
image co-ordinate (Pixel,Line) into geo-referenced co-ordinates.

Normally a dataset will contain either an affine geotransform or GCPs. In addition to the informa-
tion about how co-ordinates are related to the geo-referenced co-ordinates, the name of co-ordinate
system is also assigned to the image.

6.3 Writing Raster
There are various format for storing the raster data; Geotiff is the most commonly used. We will
use gdal library to read and write the raster data. Check if you have installed gdal by issuing
the command import gdal. If you get no error, then things are under control, otherwise go to
http://trac.osgeo.org/gdal/wiki/DownloadSource, download and install the latest version.
Let us first write the the data in GeoTIFF format. First we will write the data without noise.

>>> import gdal
>>> driver = gdal.GetDriverByName('GTiff')
>>> file_name = "/home/tomer/my_books/python_in_hydrology/datas/data.tif"
>>> dataset = driver.Create(file_name, data.shape[1], data.shape[0], 1,
... gdal.GDT_Float32)
>>> dataset.SetGeoTransform((664000.0, 100.0, 0.0, 1309000.0, 0.0, -100.0))
>>> dataset.GetRasterBand(1).WriteArray(data, 0, 0)
>>> dataset = None

First we created the driver, and asked it to create GTIFF file. Other types of format can also
be created. A list of the format supported by gdal, and their code for creating the driver are

http://trac.osgeo.org/gdal/wiki/DownloadSource
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listed at http://www.gdal.org/formats_list.html, e.g. code for portable network graphics
is PNG. Then we create the database i.e. we create the file in computer, by issuing command
dirver.Create. The inputs required to Create are name of the file, size of the data, number
of band in the data, format of the data. Then we define the geoinformation by issuing the
SetGeoTransform command. And finally we write the data using the method GetRasterBand.
It is good practice to close the data with defining the dataset as None. If path for the specified
file name does not exist, it returns None, and will give error if other operations are performed over it.

In the similar way, we can write the data corrupted with noise.

>>> driver = gdal.GetDriverByName('GTiff')
>>> file_name = "/home/tomer/my_books/python_in_hydrology/datas/data_noisy.tif"
>>> dataset = driver.Create(file_name, data_noisy.shape[1], data_noisy.shape[0], 1, gdal.GDT_Float32)
>>> dataset.SetGeoTransform((664000.0, 100.0, 0.0, 1309000.0, 0.0, -100.0))
>>> dataset.GetRasterBand(1).WriteArray(data_noisy, 0, 0)
>>> dataset = None

6.4 Writing Vector
Shapefile (.shp) format is quiet commonly used type of vector data. Let us write one shapefile. To
write shapefile, we will be using the package ogr. OGR is a part of the GDAL library. OGR deals
with the vector formats, while GDAL main library is for raster formats. A list of format supported
by OGR along with their code name to be used while creating driver, is given at http://www.gdal.
org/ogr/ogr_formats.html. Let us say, we want to make a shapefile having location of the four
cities and their name. The details of cities are as:

Name Latitude Longitude
Bijnor 29.4 78.1
Delhi 28.6 77.2
Bangalore 13.0 77.8
Berambadi 11.8 76.6

We begin with importing ogr library and defining the location and names of the cities.

>>> import ogr
>>> lat = [29.4,28.6,13.0,11.8]
>>> lon = [78.1,77.2,77.8,76.6]
>>> name = ['Bijnor', 'Delhi', 'Bangalore', 'Berambadi']

Now, we define the name of driver (ESRI Shapefile), and create the data source.
driver.CrateDataSource defines the name of the folder where data will be saved.
ds.CreateLayer defines the name of the shapefile along with the geometry type (point in this
case). Then we define, field name as ’Name’ and say that it is a string type having a maximum width
of 16.

>>> driver = ogr.GetDriverByName("ESRI Shapefile")
>>> ds = driver.CreateDataSource('/home/tomer/my_books/python_in_hydrology/datas/')
>>> layer = ds.CreateLayer('location', geom_type=ogr.wkbPoint)
>>> field_defn = ogr.FieldDefn('Name', ogr.OFTString )
>>> field_defn.SetWidth(16)
>>> layer.CreateField(field_defn)

http://www.gdal.org/formats_list.html
http://www.gdal.org/ogr/ogr_formats.html
http://www.gdal.org/ogr/ogr_formats.html
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Now, we have the basic information ready, and we can start adding the information about cities
(name and location). First we create a feature to store the information about city. Then, we add the
name of the city in the ’Name’ field. After this, we say that it is point type, and we add its longitude
and latitude. At last, we destroy the feature and data source, so that nothing else can be done with
them, and our data is saved properly.

>>> i = 0
>>> for i in range(len(name)):
>>> feature = ogr.Feature(layer.GetLayerDefn())
>>> feature.SetField('Name', name[i])
>>> pt = ogr.Geometry(ogr.wkbPoint)
>>> pt.SetPoint_2D(0, lon[i], lat[i])
>>> feature.SetGeometry(pt)
>>> layer.CreateFeature(feature)
>>> feature.Destroy()
>>> ds.Destroy()

We can see this shapefile in any GIS viewere. Fig. 6.5 shows the location of cities which was
generated using QGIS.

Figure 6.5: Location of the cities.

6.5 Reading the raster
In this section, we will read the data that we wrote in earlier section. We will read the raster data
that has noise in it.
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>>> driver = gdal.GetDriverByName('GTiff')
>>> file_name = "/home/tomer/my_books/python_in_hydrology/datas/data_noisy.tif"
>>> dataset = gdal.Open(file_name, GA_ReadOnly)
>>> geotransform = dataset.GetGeoTransform()
>>> data = dataset.GetRasterBand(1).ReadAsArray()
>>> dataset = None

6.6 Read the vector
In this section, we will read the vector data, that we wrote earlier. First, we need to import ogr
library. Then we open data source by specifying the directory of the shapefile. Then, we use
GetLayerByName to read the shapefile by specifying the name of shpaefile without .shp extension.
After this, we are printing \n which means print a blank line. \n represents a new line, and \t rep-
resents the tab. Now, we are printing header information (SI., Name, Latitude, Longitude). We are
using .format to format the output. The number inside '{}' after the colon (:) represents the
length of the output. The we read the feature in the shapefile one by one using the for loop. From
each feature, we extract the name using GetFieldAsString, Longitude using GetX and Latitude
using GetY. At the end to avoid corrupting the database, we close it safely by specifying data source
as None.

>>> import ogr
>>> ds = ogr.Open( '/home/tomer/my_books/python_in_hydrology/datas/' )
>>> lyr = ds.GetLayerByName('location' )
>>>
>>> print("\n")
>>> print("{} \t {:10s} \t {} \t {}".format('SI', 'Name', 'Longitude', 'Latitude'))
>>> for feat in lyr:
>>> geom = feat.GetGeometryRef()
>>> name = feat.GetFieldAsString(0)
>>> lat = geom.GetX()
>>> lon = geom.GetY()
>>> print('{0} \t {1:10s} \t {2:.3f} \t \t {3:.3f}'.format(0, name, lat, lon ))
>>>
>>> ds = None

SI Name Latitude Longitude
0 Bijnor 78.100 29.400
0 Delhi 77.200 28.600
0 Bangalore 77.800 13.000
0 Berambadi 76.600 11.800

6.7 Filtering
The active RADAR data is affected by speckle/noise. Before we extract some useful information
from the satellite data, we need to remove/minimize these speckle from the data. These filters
essentially try to remove the high frequency information. In reality this high frequency information
need not to be noise. So we need to specify how much filtering we want. The types of filter
can be divided into two categories: adaptive and non adaptive filters. Adaptive filters adapt their
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weightings across the image to the speckle level, and non-adaptive filters apply the same weightings
uniformly across the entire image. In this section, we will be using one example of both category.
We will use median filter from the non-adaptive filter category, and Wiener filter from the adaptive
category.

We can import the medfilt2d function from the scipy.signal library. First, we read the noisy
data that we saved in tif format from hard disk. Then we apply a filter to it having window size of
3× 3. Fig. 6.6 shows the filtered image. When, we compare this image with the original image,
and with the image in which we mixed some noise, we see that filtered images showed more smooth
variation, but is not showing no where near to the original image.

>>> from osgeo import gdal
>>> from scipy.signal import medfilt2d
>>> from osgeo.gdalconst import *
>>> import matplotlib.pyplot as plt
>>>
>>> # read the raster data
>>> driver = gdal.GetDriverByName('GTiff')
>>> file_name = "/home/tomer/my_books/python_in_hydrology/datas/data_noisy.tif"
>>> dataset = gdal.Open(file_name, GA_ReadOnly)
>>> geotransform = dataset.GetGeoTransform()
>>> data = dataset.GetRasterBand(1).ReadAsArray()
>>> dataset = None
>>>
>>> data_median = medfilt2d(data, kernel_size=3) # median filter of 3X3 window
>>> # plot the data
>>> plt.matshow(data_median)
>>> plt.colorbar()
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/median.png')

Figure 6.6: Noisy data after filtering with median filter.
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Now, we apply Wiener filter on the same dataset. We keep the same window size for Wiener filter
also. After doing the filtering, we are also saving the data in tif format. This tell use, how can read
some geospatial data, process the feature information (matrix in this case), and then save the feature
information with the co-ordinate information.

>>> from scipy.signal import wiener
>>> data_wiener = wiener(data, mysize=(3,3)) # Wiener filter
>>> # plot
>>> plt.matshow(data_wiener)
>>> plt.colorbar()
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/wiener.png')
>>>
>>> # save the data into tif format
>>> driver = gdal.GetDriverByName('GTiff')
>>> file_name = "/home/tomer/my_books/python_in_hydrology/datas/data_filtered.tif"
>>> dataset = driver.Create(file_name, data_wiener.shape[1], data_wiener.shape[0], 1, gdal.GDT_Float32)
>>> dataset.SetGeoTransform(geotransform)
>>> dataset.GetRasterBand(1).WriteArray(data_wiener, 0, 0)
>>> dataset = None

Figure 6.7: Noisy data after filtering with Wiener filtering.

6.8 NDVI

Normalized Difference Vegetation Index (NDVI) is a index to analyse variation in the vegetation.
The formula to compute NDVI is as:

NDV I =
NIR−RED
NIR+RED

(6.3)
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We begin with importing libraries, and do not forget to import division from __future__ library.
This is to avoid the integer division. Then we read the data that is in tiff format. To compute NDVI,
we need data for NIR (band4) and RED (band3).

>>> # import the required library
>>> from __future__ import division
>>> from osgeo import gdal
>>> from osgeo.gdalconst import *
>>> import matplotlib.pyplot as plt
>>>
>>> # read the banda 3 raster data
>>> driver = gdal.GetDriverByName('GTiff')
>>> file_name = "/home/tomer/my_books/python_in_hydrology/datas/band3.tif"
>>> dataset = gdal.Open(file_name, GA_ReadOnly)
>>> geotransform = dataset.GetGeoTransform()
>>> projection = dataset.GetProjection()
>>> band3 = dataset.GetRasterBand(1).ReadAsArray()
>>> dataset = None
>>> # read the band 4 raster data
>>> file_name = "/home/tomer/my_books/python_in_hydrology/datas/band4.tif"
>>> dataset = gdal.Open(file_name, GA_ReadOnly)
>>> band4 = dataset.GetRasterBand(1).ReadAsArray()
>>> dataset = None

Apart from the data, we are also retrieving the geotransform and projection information. Let us
print them one by one.

>>> print(geotransform)
(76.5, 0.001, 0.0, 11.85, 0.0, -0.001)

The first entry in this tell us, that latitude and longitude for the north-west corner are 11.85 and 76.5
respectively. Resolution of data is 0.001 in both x and y direction, and the image has no rotation.
Let us print now, projection information.

>>> print(projection)
GEOGCS["WGS 84",DATUM["unknown",SPHEROID["WGS84",6378137,298.257223563]],
PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]

This tells us that the datum of data is WGS84, and our data is in geographic co-ordinates
(latitude and longitude). More details on the projections and their parameters can be found at
http://spatialreference.org.

We can check the data type using dtype attributes. We see that data type integer. That is why we
have imported division from __future__ library, to avoid integer division.

>>> print(band3.dtype)
uint8

Now we compute NDVI, and plot the result using matshow. In matshow, we are also specifying
vmin and vmax to control the extent of colorbar.

http://spatialreference.org
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>>> ndvi = (band4-band3)/(band4+band3)
>>>
>>> plt.matshow(ndvi,cmap=plt.cm.jet, vmin=-1, vmax=1)
>>> plt.colorbar(shrink=0.8)
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/ndvi.png')

Figure 6.8: Normalized difference vegetation index.
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Chapter 7

Plotting

First problem that we had during the plotting was the font size. We can change the font size by
specifying the fontsize method of pyplot, but for this we need to specify everywhere the fontsize.
This becomes cumbersome task, especially when you want to make many plots. There is another
way to come out of this problem, by updating the prcParams method of plt. The updating is done
in the following manner.

>>> import matplotlib.pyplot as plt
>>> params = {'axes.labelsize': 17,
>>> 'text.fontsize': 17,
>>> 'legend.fontsize': 17,
>>> 'xtick.labelsize': 17,
>>> 'ytick.labelsize': 17,
>>> 'text.usetex': False,
>>> 'font.size':17}
>>>
>>> plt.rcParams.update(params)

The name of the parameters are self explaining. If we want to keep the same font size for all
kind of text (e.g. ticks, labels, legend etc.), we can simply update text.fontsize. It is a good
practice to write this before making plots and define the value which suits you. If later you want to
change font size for some attribute of plot, you can define that particular value there. We will be
using these fontsizes in all plots henceforth, but will not be adding this text into each code for brevity.

7.1 Date axis
Most of the data in hydrology is time series data. To plot such data, it is required that x−axis should
be time axis, and on y− axis the data should be plotted. We will be using timeseries library of
scikits package to deal with time series data, which also provides functions to plot time series
data. We will generate some data at regular (daily) interval which is like having data simulated
using some model, and some data at random time which is like having measurements at irregular
interval. The measurement data also contains corresponding vectors for time i.e. year, month and
day.
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>>> import scikits.timeseries as ts
>>> x = np.arange(500)
>>> y_sim = np.sin(x/25.0)
>>> year = [2009, 2010, 2010, 2010, 2011] # year for measurement
>>> month = [10, 2, 5, 9, 1] # month for measurement
>>> day = [20, 15, 17, 22, 15] # day for measurement
>>> y_meas = [0.4, -0.5, 0, 1, 0]

We begin with creating the time series for regular data. To do so, first we define start date, then we
use this start date and simulated data to make a timeseries object using ts.timeseries.

>>> first_date = ts.Date(freq='D',year=2009,month=10,day=05)
>>> data_series = ts.time_series(y_sim, start_date=first_date)

As measured data is not at regular frequency, we can not define it so easily. We need to make date
objects for each date, and then we can create time series object.

>>> date = []
>>> for i in range(len(year)):
>>> date.append(datetime.date(year[i], month[i], day[i]))
>>> meas_series = ts.time_series(y_meas, dates=date,freq='D')

scikits.timeseries provides lib.plotlib to make plots of time series. The library has similar
functions to make plots and hence easy to adopt. Fig. 7.1 shows the plot having time axis.

>>> import scikits.timeseries.lib.plotlib as tpl
>>> fig = tpl.tsfigure()
>>> fsp = fig.add_tsplot(111)
>>> fsp.tsplot(data_series, 'r', lw=3, label='simulated')
>>> fsp.tsplot(meas_series, 'g*', ms=20, label='measured')
>>> fsp.set_ylim(-2, 2)
>>> fsp.grid()
>>> plt.ylabel('Data')
>>> fsp.legend(loc='best')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/date.png')
>>> plt.close()

7.2 Bar charts

Let us first create some data. We will crate two variables (rainfall and runoff) of length 5.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> n = 5
>>> rainfall_mean = 500+300*np.random.rand(n)
>>> runoff_mean = 0.75*np.random.rand(n)*rainfall_mean

The bar requires the corresponding value for x, and it does not calculate by itself. We are also
specifying the width of bars. The plt.bar returns rectangle patches which can be used to modify
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Figure 7.1: Plot showing dates for x-axis.

patches or to extract some information from them. In this example these rectangle patches are used
to extract their height, and then to place text at the top of bars. Fig. 7.2 shows the bar plot.

>>> ind = np.arange(n) # the x locations for the groups
>>> width = 0.35 # the width of the bars
>>>
>>> rects1 = plt.bar(ind, rainfall_mean, width, color='g', label='Rainfall')
>>> rects2 = plt.bar(ind+width, runoff_mean, width, color='m', label='Runoff')
>>>
>>> plt.ylabel('Annual sum (mm)')
>>> plt.title('Water balance')
>>> plt.xticks(ind+width, ('2001', '2002', '2003', '2004', '2005') )
>>>
>>> def autolabel(rects):
>>> # attach some text labels
>>> for rect in rects:
>>> height = rect.get_height()
>>> plt.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height),
>>> ha='center', va='bottom')
>>>
>>> plt.legend()
>>> autolabel(rects1)
>>> autolabel(rects2)
>>>
>>> plt.ylim(ymax=1000)
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/bar.png')
>>> plt.close()

7.3 Pie charts
First we generate three variables, runoff, recharge and evapotranspiration by assuming some rainfall.
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Figure 7.2: Plot showing an example of bar.

>>> rainfall = 1000
>>> runoff = 0.5*np.random.uniform()*rainfall
>>> recharge = 0.2*np.random.uniform()*rainfall
>>> evapotranspiration = rainfall - runoff - recharge

We modify the figure size by its default size to make the plot square. Then, we define the are for pie
chart by specifying the plt.axis.

>>> plt.figure(figsize=(8,8))
>>> plt.axis([0.2, 0.2, 0.8, 0.8])

We make a list of the variables, and tuple for the name of variables.

>>> labels = 'Runoff', 'Recharge', 'Evapotranspiration'
>>> fracs = [runoff, recharge, evapotranspiration]

We can use explode to highlight some of the variable, in this case ’Recharge’. The amount of the
explode is controlled by its parameters. The autopct is used to define the format of the number
inside pie. Fig. 7.3 shows the pie chart.

>>> explode=(0, 0.1, 0)
>>> plt.pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True)
>>> plt.title('Annual water balance', bbox={'facecolor':'0.6', 'pad':10})
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/pie.png')

7.4 2 D plots
The images (JPEG, TIFF, PNG etc.) comes in two formats: greyscale or RGB. plt.imshow can
be used to show both type of images. First we use imread to read the data from figures, then we
make a three dimensional array data by first creating an empty array, and then specifying the each
band data in RGB (red, green blue) order. If we are reading an image having all the three bands in a
single image, the imread will provide the data as three dimensional array and can be used directly.
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Figure 7.3: Plot showing an example of pie with explode.

The imshow is used to make the 2 dimensional plot with interpolation algorithm type to change its
default interpolation type. Fig. 7.7 shows two dimensional map generated using the imshow.

>>> band2 = plt.imread('/home/tomer/my_books/python_in_hydrology/datas/band2.tif')
>>> band3 = plt.imread('/home/tomer/my_books/python_in_hydrology/datas/band3.tif')
>>> band4 = plt.imread('/home/tomer/my_books/python_in_hydrology/datas/band4.tif')
>>>
>>> foo = np.empty((band2.shape[0], band2.shape[1], 3))
>>> foo[:,:,2] = band2
>>> foo[:,:,1] = band3
>>> foo[:,:,0] = band4
>>>
>>> plt.imshow(foo, interpolation='hanning')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/imshow.png')

pcolor stands for pseudo color, and is used to increase the contrast in the data while making plots.
The colorbar is used to show the colormap. The type of colormap is controlled by using the cmap
as input to pcolor. Fig. 7.5 shows the pseudo color plot.

>>> plt.pcolor(band2, cmap=plt.cm.Paired)
>>> plt.colorbar()
>>> plt.ylim(ymax=band2.shape[0])
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/pcolor.png')



86 Chapter 7. Plotting

Figure 7.4: Two dimensional plot using the imshow.

Figure 7.5: Two dimensional plot using the pcolor.

We will be using the band2 data to make the contours. Since the ’band2’ data has very hight spatial
variability, we will be first filtering it using median filter.

>>> from scipy.signal import medfilt2d
>>> data = medfilt2d(band2, kernel_size=7)

plt.contour is used to make contours. By default it does not show the contour values, to show the
contour labels, we use the plt.clabel. Fig. 7.6 shows the contour plot along with contour labels.

>>> CS = plt.contour(data,10)
>>> plt.clabel(CS, inline=1, fontsize=10)
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/contour.png')
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Figure 7.6: Plot showing the contour along with contour labels.

plt.contour provides the empty contour, i.e. there is no color between successive contours. We
can use contourf to make filled contour plots. Fig. 7.7 shows the filled contour plot.

>>> plt.contourf(data,10)
>>> plt.colorbar()
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/contourf.png')

Figure 7.7: Filled contour plotted using the contourf.
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7.5 3 D plots
To make three dimensional plot, we need to import Axes3D library from the
mpl_toolkits.mplot3d. The scatter or line plot in three dimension is made in the way
similar to two dimension. We will generate three variables, and make the three dimensional scatter
plot. Fig. 7.8 shows the three dimensional scatter plot.

>>> import numpy as np
>>> from mpl_toolkits.mplot3d import Axes3D
>>>
>>> x = np.random.randn(100)
>>> y = np.random.randn(100)
>>> z = np.random.randn(100)
>>>
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> ax.scatter(x, y, z, color='k', marker='s')
>>>
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('y')
>>> ax.set_zlabel('z')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/3dscatter.png')
>>> plt.close()

Figure 7.8: Date axis

7.6 Box-plot
Box-plot is a way to graphically visualize the statistical properties of the data. It provides infor-
mation about the minimum, first quartile (Q1), median (Q2), upper quartile (Q3), maximum, and
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outliers if present. boxplot is used to make boxplot. Fig. ?? shows the box plot.

>>> n = 4
>>> x = range(n)
>>> y = 5+np.random.randn(100,4)
>>>
>>> plt.boxplot(y,'gD')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/boxplot.png')

Figure 7.9: Box plot of data.

7.7 Q-Q plot
The Q-Q (quantile-quantile) plot is a graphical method of comparing two probability distributions
by plotting their quantiles against each other. We will use statistics library to calculate the
quantiles. We will generate three random variable, two having same (normal) distributions, and one
having different (uniform) distribution, and will compare their behaviour on the Q-Q plot. Fig. 7.10
shows the Q-Q plot. On the x-axis we have the quantiles for normal distribution, on y-axis we are
plotting quantiles of uniform and normal distributions. We see that when the distributions are same,
they fall on 1:1 line, otherwise they depart from it.

>>> import statistics as st
>>> from scipy.interpolate import interp1d
>>>
>>> def Q(data):
>>> F, data1 = st.cpdf(data, n=1000)
>>> f = interp1d(F, data1)
>>> return f(np.linspace(0,1))
>>>
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>>> x = np.random.randn(1000)
>>> y = 5*np.random.rand(1000)
>>> z = np.random.randn(1000)
>>>
>>> Qx = Q(x)
>>> Qy = Q(y)
>>> Qz = Q(z)
>>>
>>> plt.plot([-5,5] , [-5,5], 'r', lw=1.5, label='1:1 line')
>>> plt.plot(Qx, Qy, 'gd', label='Uniform')
>>> plt.plot(Qx, Qz, 'm*', label='Normal')
>>> plt.axis((-5, 5, -5, 5))
>>> plt.legend(loc=2)
>>> plt.xlabel('Normal')
>>> plt.ylabel('observed')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/q_q.png')

Figure 7.10: Quantile-quantile plot.

7.8 plotyy
If we want to plot two variables in the same plot which have different range (minimum and maxi-
mum), then we should not plot them using same axis. If we do so, we will not be able to see the
variation in one variable. Fig. 7.11 shows the plot having two y axis.

>>> fig = plt.figure()
>>> plt.subplots_adjust(top=0.9,bottom=0.15,left=0.15,right=0.85)
>>> ax1 = fig.add_subplot(111)
>>>
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>>> t = np.linspace(0,10)
>>> y1 = 5*np.sin(t)
>>> y2 = 10*np.cos(t)
>>>
>>> ax1.plot(t, y1, 'g', label='sin')
>>> ax1.set_xlabel('time (s)')
>>>
>>> #Make the y-axis label and tick labels match the line color.
>>> ax1.set_ylabel('sin', color='b')
>>> for tl in ax1.get_yticklabels():
>>> tl.set_color('b')
>>> ax1.set_ylim(-6,6)
>>> plt.legend(loc=3)
>>>
>>> ax2 = ax1.twinx()
>>> ax2.plot(t, y2, 'r', label='cos')
>>> ax2.set_ylabel('cos', color='r')
>>> for tl in ax2.get_yticklabels():
>>> tl.set_color('r')
>>> ax2.set_ylim(-15,15)
>>>
>>> plt.legend(loc=4)
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/multiple_y.png')

Figure 7.11: Plot showing multiple y-axis.
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7.9 Annotation
Apart from plotting lines, dot, legends etc., we may need to put additional information on the plot.
This is called annotation. We can put different arrow, texts etc. to make our graph more clear. Fig.
7.12 shows one such figure having few arrows, texts to improve the readability of the graph.

>>> t = np.linspace(0,10)
>>> y = 5*np.sin(t)
>>>
>>> plt.plot(t, y, lw=3, color='m')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.annotate('ridge', xy=(np.pi/2, 5), xycoords='data',
>>> xytext=(-20, -75), textcoords='offset points',
>>> arrowprops=dict(arrowstyle="->")
>>> )
>>>
>>> plt.annotate('valley', xy=(1.5*np.pi, -5), xycoords='data',
>>> xytext=(-30, 80), textcoords='offset points',
>>> size=20,
>>> bbox=dict(boxstyle="round,pad=.5", fc="0.8"),
>>> arrowprops=dict(arrowstyle="->",),
>>> )
>>>
>>> plt.annotate('Annotation', xy=(8, -5), xycoords='data',
>>> xytext=(-20, 0), textcoords='offset points',
>>> bbox=dict(boxstyle="round", fc="green"), fontsize=15)
>>>
>>> plt.text(3.0, 0, "Down", color = "w", ha="center", va="center", rotation=90,
>>> size=15, bbox=dict(boxstyle="larrow,pad=0.3", fc="r", ec="r", lw=2))
>>>
>>> plt.text(np.pi*2, 0, "UP", color = "w", ha="center", va="center", rotation=90,
>>> size=15, bbox=dict(boxstyle="rarrow,pad=0.3", fc="g", ec="g", lw=2))
>>>
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/annotate.png')

7.10 Basemap
The Basemap library of mpl_toolkits.basemap provides options for showing some variable on
the globe, showing boundaries (hydrological, political etc.) in most commonly used projections.
We will use plot the band1 data with the boundary of the Berambadi watershed. Fig. 7.13 shows the
band1 data with boundary of watershed marked in white.

>>> from mpl_toolkits.basemap import Basemap
>>> import gdal
>>> from gdalconst import *
>>>
>>> # read the data
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Figure 7.12: Plot showing various annotations.

>>> dataset = gdal.Open("/home/tomer/my_books/python_in_hydrology/datas/band1.tif",GA_ReadOnly)
>>> band1 = dataset.GetRasterBand(1).ReadAsArray()
>>> GT = dataset.GetGeoTransform()
>>>
>>> dataset = None
>>>
>>> # make the co ordinate for the berambadi
>>> lon = np.linspace(GT[0]+GT[1]/2, GT[0]+GT[1]*(band1.shape[1]-0.5), band1.shape[1])
>>> lat = np.linspace(GT[3]+GT[5]/2, GT[3]+GT[5]*(band1.shape[0]-0.5), band1.shape[0])
>>> Lon, Lat = np.meshgrid(lon, lat)
>>>
>>> # make the base map
>>> m = Basemap(projection='merc',llcrnrlat=11.72,urcrnrlat=11.825,\
>>> llcrnrlon=76.51,urcrnrlon=76.67,lat_ts=20,resolution=None)
>>>
>>> # draw parallels and meridians.
>>> m.drawparallels(np.arange(11.7,11.9,.05),labels=[1,0,0,0])
>>> m.drawmeridians(np.arange(76.4,76.8,.05),labels=[0,0,0,1])
>>>
>>> # read the shapefile archive
>>> s = m.readshapefile('/home/tomer/my_books/python_in_hydrology/datas/berambadi','berambadi',
>>> color='w',linewidth=2.5)
>>>
>>> # compute native map projection coordinates of lat/lon grid.
>>> x, y = m(Lon,Lat)
>>>
>>> # contour data over the map
>>> cs = m.pcolor(x,y,band1,cmap=plt.cm.jet)
>>> cb = plt.colorbar(cs, shrink=0.6, extend='both')
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>>>
>>> plt.title(" Band 1")
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/basemap.png')

Figure 7.13: Spatial variation of band1 along with boundary of Berambadi watershed.

7.11 Shared axis

Often it is required to make two or more plots having the same axis (x or y or both). The
plt.subplots provides an easy way to make the common (shared) axis. First, we will generate
the synthetic data having different range. Then plot using the plt.subplots. The other options in
plt.subplots are similar to plt.subplot.

>>> x1 = range(100)
>>> x2 = range(125)
>>>
>>> y1 = np.random.rand(100)
>>> y2 = 2.0*np.random.rand(125)
>>> y3 = np.random.rand(125)
>>> y4 = 1.5*np.random.rand(100)
>>>
>>> fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True, sharey=True)
>>> ax1.plot(x1,y1, 'ro')
>>> ax2.plot(x2,y2, 'go')
>>> ax3.plot(x2,y3, 'bs')
>>> ax4.plot(x1,y4, 'mp')
>>> plt.tight_layout()
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/shared_xy.png')
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Fig. 7.14 shows the resulted plot.

Figure 7.14: Plots having the common (shared) axis.

7.12 Subplot
So far, we have used subplot having same width and height. The situation might arise, when we
need to increase the size for some subplot. In the following section, we will try to plot such in such
case. Firs, we will use plt.subplot, itself to make some particular subplot.

>>> x = np.random.rand(25)
>>> y = np.arccos(x)
>>>
>>> plt.close('all')
>>> plt.subplot(221)
>>> plt.scatter(x,y)
>>>
>>> plt.subplot(223)
>>> plt.scatter(x,y)
>>>
>>> plt.subplot(122)
>>> plt.scatter(x,y)
>>> plt.tight_layout()
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/sub_plot1.png')

Fig. 7.15 shows the resulted plot. The plt.tight_layout() increase the readability of the ticks
labels. If this option is not used, then you might have got figures with overlapping labels etc. This
options prevents overlapping of axis, title etc.

Now, we will make these kinds of subplot using subplot2grid.
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Figure 7.15: Plot with varying span of subplots.

>>> fig = plt.figure()
>>> fig.subplots_adjust(wspace=0.5, hspace=0.4)
>>>
>>> ax1 = plt.subplot2grid((3, 3), (0, 0))
>>> ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2)
>>> ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2)
>>> ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)
>>>
>>> ax1.scatter(10*x,y)
>>> ax2.scatter(10*x,y)
>>> ax3.scatter(10*x,y)
>>> ax4.scatter(10*x,y)
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/sub_plot2.png')

Fig. 7.16 shows the resulted plot.
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Figure 7.16: Plot with varying span of subplots plotted using subplot2grid.
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Chapter 8

Input-Output

8.1 xls
The data.xls file contains the data of soil moisture estimated from the AMSR-E platform. You
can open the xls file and have a look at its content. In this file we have data in two sheets, Ascending
and Descending which corresponds to satellite direction. Each sheet contains the time series data
for various grids point. Missing data is assigned a number of 999.9. In this section we will read data
of one station for all the time, modify the data which is missing, and write in another xls file. We
will be using xlsrd library to read data from xls file, and xlwt to write the data to xls file. The xlrd
does not read xlsx data file, you should convert the xlsx type of file into xls before reading.

>>> import xlrd
>>> import numpy as np

We create book object by passing the name of xls file to xlrd.open_workbook. The sheet from
which we need to read the data is specified using the sheet_by_name.

>>> book = xlrd.open_workbook('/home/tomer/my_books/python_in_hydrology/datas/data.xls')
>>> sheet = book.sheet_by_name('Ascending')

The number of columns and rows in sheets can be checked by using the nrows and ncols attributes
respectively.

>>> sheet.nrows
1100
>>> sheet.ncols
39

Our sheet’s first two rows are heading of table and latitude and longitude, and hence the length of
time series data is two lesser than the number of rows. First we create an empty array to store the
data, and then we read the data cell by cell using the cell_value. We will be reading the data of
grid having latitude equal to 12.4958 and longitude equal to 75.7484, which is in fourth column
(indices start with zero).

>>> sm = np.empty(sheet.nrows-2)
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>>> year = np.empty(sheet.nrows-2, int)
>>> month = np.empty(sheet.nrows-2, int)
>>> day = np.empty(sheet.nrows-2, int)
>>> for i in range(sm.shape[0]):
>>> sm[i] = sheet.cell_value(i+2,27)
>>> year[i] = sheet.cell_value(i+2,0)
>>> month[i] = sheet.cell_value(i+2,1)
>>> day[i] = sheet.cell_value(i+2,2)

We can check the data of some variable e.g. sm.

>>> sm
array([ 16.6, 999.9, 15.3, ..., 17.4, 999.9, 18.2])

We can define all the missing data as nan.

>>> sm[sm==999.9] = np.nan
>>> sm
array([ 16.6, nan, 15.3, ..., 17.4, nan, 18.2])

Now the soil moisture data has nan instead of 999.9 to denote missing values. We will write this
soil moisture data into xls file using xlwt library. First we open a workbook, then we add a sheet
by name using add_sheet. After this we start writing entries cell by cell. Finally, we save the
worksheet using book.save.

>>> import xlwt
>>> book = xlwt.Workbook()
>>> sheet = book.add_sheet('Ascending')
>>> sheet.write(0,0, 'Year')
>>> sheet.write(0,1, 'Month')
>>> sheet.write(0,2, 'Day')
>>> sheet.write(0,3, 'Latitude')
>>> sheet.write(1,3, 'Longitude')
>>>
>>> for i in range(len(sm)):
>>> sheet.write(i+2, 4, sm[i])
>>> sheet.write(i+2, 0, year[i])
>>> sheet.write(i+2, 1, month[i])
>>> sheet.write(i+2, 2, day[i])
>>>
>>> book.save('/home/tomer/my_books/python_in_hydrology/datas/data1.xls')

I have written a library ambhas.xls which provides relatively easy way to read and write the xls
data. The data can be read in the following way.

>>> from ambhas.xls import xlsread
>>> fname = '/home/tomer/my_books/python_in_hydrology/datas/data.xls'
>>> foo = xlsread(fname)
>>> data = foo.get_cells('a3:a5', 'Ascending')

The data to xls file is written in the following way. The data which is written should be a numpy
array.
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>>> from ambhas.xls import xlswrite
>>> fname = '/home/tomer/my_books/python_in_hydrology/datas/data.xls'
>>> foo = xlswrite(data, 'a3', 'Ascending')
>>> foo.save(fname)

As this library depends upon the xlrd, it also does not read xlsx data file, and you should convert
the xlsx type of file into xls before reading.

8.2 Text file

Some of the software/tools take the input form text files and then write to text files. If we want to do
bath processing (process many files) using these tools, then we need to modify the input text files
and extract the information from the file written by the tool. In this section we will read a file, and
then change some parameter of the file, and then write it.

Before jumping into many thing, first we will just read the text file. The ’r’ is for reading, ’w’ is for
’writing’ and ’a’ is for appending into existing file.

>>> fname_read = '/home/tomer/my_books/python_in_hydrology/datas/Albedo.prm'
>>> f_read = open(fname_read, 'r')
>>> for line in f_read:
>>> print line
>>> f_read.close()
NUM_RUNS = 1

BEGIN

INPUT_FILENAME = /home/tomer/data/input.hdf

OBJECT_NAME = MOD_Grid_BRDF|

FIELD_NAME = Albedo_BSA_Band1

BAND_NUMBER = 1

SPATIAL_SUBSET_UL_CORNER = ( 13.0 75.0 )

SPATIAL_SUBSET_LR_CORNER = ( 11.0 78.0 )

RESAMPLING_TYPE = BI

OUTPUT_PROJECTION_TYPE = UTM

ELLIPSOID_CODE = WGS84

UTM_ZONE = 0
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OUTPUT_PROJECTION_PARAMETERS = ( 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 )

OUTPUT_FILENAME = /home/tomer/data/output.tif

OUTPUT_TYPE = GEO

END

We see that file has many parameters defined, which will be used by some tool to process input hdf
images. Let us say, we have four input files, and we want to batch process them.

>>> fname_input = ['input0', 'input1', 'input2', 'input3']
>>> fname_output = ['output0', 'output1', 'ouput2', 'output3']
>>>
>>> for i in range(len(fname_input)):
>>>
>>> fname_read = '/home/tomer/my_books/python_in_hydrology/datas/Albedo.prm'
>>> f_read = open(fname_read, 'r')
>>>
>>> fname_write = '/home/tomer/my_books/python_in_hydrology/datas/Albedo_ii.prm'.replace('ii',str(i))
>>> f_write = open(fname_write, 'w')
>>> for line in f_read:
>>> if 'INPUT_FILENAME' in line:
>>> line = line.replace('input',fname_input[i])
>>> print line
>>> if 'OUTPUT_FILENAME' in line:
>>> line = line.replace('output',fname_output[i])
>>> print line
>>> f_write.write(line)
>>>
>>> f_write.close()
>>>
>>> f_read.close()

8.3 NetCDF

In this section, we will read a NetCDF file, and write in the same format. I am using the
file, rhum.2003.nc which can be downloaded from http://www.unidata.ucar.edu/software/
netcdf/examples/files.html. We will be using NetCDF library from Scientific.IO to read
and write the NetCDF data, so lets first import it.

>>> import numpy as np
>>> from Scientific.IO import NetCDF as nc

First, we open the file.

>>> file = nc.NetCDFFile('/home/tomer/my_books/python_in_hydrology/datas/rhum.2003.nc', 'r')

http://www.unidata.ucar.edu/software/netcdf/examples/files.html
http://www.unidata.ucar.edu/software/netcdf/examples/files.html
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We can look at its attributes by using dir.

>>> dir(file)
['Conventions', 'base_date', 'close', 'createDimension', 'createVariable', 'description',
'flush', 'history', 'platform', 'sync', 'title']

The title tells about the title of dataset, description provides the description of the content of file.

>>> file.title
'mean daily NMC reanalysis (2003)'
>>> file.description
'Data is from NMC initialized reanalysis\n(4x/day). It consists of most variables interpolated to\npressure surfaces from model (sigma) surfaces.'

We can look at the dimension of the data.

>>> file.dimensions
{'lat': 73, 'time': None, 'lon': 144, 'level': 8}

We see that, the data has four dimensions: lat, time, lon, and level. The size of each dimensions is
also given. Now, we can look at the variables in the data.

>>> file.variables
{'lat': <NetCDFVariable object at 0x1d33270>, 'rhum': <NetCDFVariable object at 0x1d33030>, 'time': <NetCDFVariable object at 0x1d33348>, 'lon': <NetCDFVariable object at 0x1d336f0>, 'level': <NetCDFVariable object at 0x1d33858>}

This provides, the name of variables and a reference of the variable to the data. This means that this
does not load the data into memory, in fact just provide a reference in the file, and we can retrieve
only the variable that we want. We shall get the value of ’rhum’ variable. First we the reference to
some variable name. Then we can see its unit, data type, and get its value.

>>> foo = file.variables['level']
>>> foo.units
'%'
>>> foo.typecode
'h'
>>> rhum = foo.getValue

Now, we can look at the shape of the variable ’rhum’.

>>> rhum.shape
(365, 8, 73, 144)

The first dimension represent the time, second represent the various pressure levels, and third repre-
sent the latitude, and the last one is longitude.

We can write the file in the same way. First we open the file for writing.

>>> file = nc.NetCDFFile('/home/tomer/my_books/python_in_hydrology/datas/test.nc', 'w')

Then we can define some global attributes like title, description etc.

>>> setattr(file, 'title', 'trial')
>>> setattr(file, 'description', 'File generated while tesing to write in NetCDF')
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Now, we can create some dimensions. We need to define the name of dimension and their size.

>>> file.createDimension('lat', 73)
>>> file.createDimension('lon', 144)
>>> file.createDimension('level', 8)
>>> file.createDimension('time', 365)

Now, we can save the variables. First, we need to define the dimension from the list created above.
The dimension should be tuple, notice the comma after the 'lat', . After this, we can create
variable using createVariable, we need to specify the name of variable, format and dimension.
We see that it has created a variable named ’lat’ and is referring to it.

>>> varDims = 'lat',
>>> lat = file.createVariable('lat', 'f', varDims)
>>> print(file.variables)
{'lat': <NetCDFVariable object at 0x2c39078>}

Finally, we can assign our data to this variable.

>>> lat = np.random.rand(73)

Now, we can close the file.

>>> file.close()

8.4 Pickle
Pickle format is very fast to read and write. But it is only useful when you want to keep data for
yourself, e.g. write data from one program, and read the same data into another program. First we
import cPicle and call it pickle.

>>> import cPickle as pickle

We define one variable e.g. a list and first save it and then read it.

>>> var = [2, 5, 8, 'foo']

We use pickle.dump to save the data.

>>> var = [2, 5, 8, 'foo']
>>> pickle.dump(var, open( "/home/tomer/my_books/python_in_hydrology.pkl", "wb" ) )
>>>
>>> var1 = pickle.load( open( "/home/tomer/my_books/python_in_hydrology.pkl", "rb" ) )
>>> print(var1)
[2, 5, 8, 'foo']
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Numerical Modelling

9.1 Integration
Suppose we want to integrate some function and the function can not be integrated analyticall, then
we go for numerical integration. To check if our numerical integration shcems is working properly
or not, we integrate the function for which analytical solution is available and then we compare
our solution. So let us begin with function of one variable. Suppose, we have function f (x) = x
to integrate over limit 0 to 10. We know from mathematics that the answer is 50. Let us now try
numerical methods about the solution. We will use integrate library of scipy. For simple function
we an use lambad function instead of def to define the function. The function integrate.quad
perform our task. It returns the integration and error in integration.

>>> from scipy import integrate
>>> y_fun = lambda x: x
>>> y,err = integrate.quad(x2,0,10)
>>> print(y,err)
(50.0, 5.551115123125783e-13)

We get the 50.0 as answer which is exactly the analytical solution, and also it says that error is the
solution is very low. It could be by chance, that we get accurate solution from the numerical scheme.
So let us try one more function, this time exponential. We will integrate f (x) = exp(−x) over 0 to
∞.

>>> y_func = lambda x: np.exp(-x)
>>> y = integrate.quad(y_func, 0, np.inf)
>>> print(y)
(1.0000000000000002, 5.842606742906004e-11)

We see that the solution is very near to the analytical solution (1.0). These function had only the vari-
able as input, but we may want to have additional parameter in the function, e.g. f (x) = exp(−ax,
and assume a = 0.5 for this example. The integrate.quad provides options for providing addi-
tional argument also.

f = lambda x,a : np.exp(-a*x)
y, err = integrate.quad(f, 0, 1, args=(0.5,))
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>>> y
0.786938680574733

9.2 ODE
Let us solve the ordinary differential equation, given as:

dy
dt

=−xt, (9.1)

with,
y0 = 10. (9.2)

First, we can import required libraries.

>>> import numpy as np
>>> from scipy import integrate
>>> import matplotlib.pyplot as plt

Now, we define our function, and the timer at which we want the solution.

>>> y1 = lambda x,t : -x*t
>>> t = np.linspace(0,10)

Now, we can use integrate.odeint to solve the ordinary differential equation. Then, we can make
a plot of the solution with respect to the time.

>>> y = integrate.odeint(y1, 10, t)
>>> # plot
>>> plt.plot(t,y)
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/ode.png')

Fig. 9.2 shows the variation of y over time.

Let us, solve a system of ordinary differential equation given as,

dx
dt

= Ax, (9.3)

where,

A =

−D1 D1 0
D1 −D1 −D2 D2
0 D2 −D3

 (9.4)

We begin with defining the parameters and A matrix.

>>> D = [0.2, 0.1, 0.3]
>>> A = np.array([[D[0], -D[0], 0],



9.3. Parameter Estimation 107

Figure 9.1: Variation of y over time.

>>> [D[0], -D[0]-D[1], D[1]],
>>> [0, D[2], -D[2]]])

Now, we can define our function dx/dt.

>>> def dX_dt(sm, t=0):
>>> return np.dot(A,sm)

Finally, we define time, initial condition, use integrate.odeint to solve, and then plot.

>>> t = np.linspace(0, 10, 100)
>>> X0 = np.array([10, 5, 20])
>>> X, infodict = integrate.odeint(dX_dt, X0, t, full_output=True)
>>>
>>> plt.plot(t,X)
>>> plt.xlabel('Time')
>>> plt.ylabel('X')
>>> plt.legend(['X1','X2','X3'])
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/ode_system.png')

9.3 Parameter Estimation

>>> from scipy import optimize, special
>>> x = np.arange(0,10,0.01)
>>> for k in np.arange(0.5,5.5):
>>> y = special.jv(k,x)
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Figure 9.2: Variation of x over time.

>>>
>>> f = lambda x: -special.jv(k,x)
>>> x_max = optimize.fminbound(f,0,6)
>>>
>>> plt.plot(x,y, lw=3)
>>> plt.plot([x_max], [special.jv(k,x_max)],'rs', ms=12)
>>> plt.title('Different Bessel functions and their local maxima')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/inverse.png')
>>> plt.close()
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Figure 9.3: Demonstration of inverse modelling.
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Chapter 10

Advance statistics

10.1 copula
Copulas are used to describe the dependence between random variables. Copula means coupling two
CDFs. Let us generate two random variables; one having normal distribution, another combination
of first one and uniform distribution.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from matplotlib.ticker import NullFormatter
>>>
>>> # synthetic data
>>> x = np.random.randn(1000)
>>> y = np.random.randn(1000)

First we would like to how is our data related by using scatter plot, and also we would like to see
how is the distribution of x and y. We can do this in three separate plots, or using subplots. In the
present case we will trying this in one plot by specifying different axis for these 3 plots. We begin
with defining the axis limits for our three plots. The input to axis are x and y for the lower left
corner, width and height of the plot. in the following example we are specifying axis in such as way
so that plots are aligned properly.

>>> plt.clf()
>>> axScatter = plt.axes([0.1, 0.1, 0.5, 0.5])
>>> axHistx = plt.axes([0.1, 0.65, 0.5, 0.3])
>>> axHisty = plt.axes([0.65, 0.1, 0.3, 0.5])

Now, we use this axis to make plots.

>>> # the plots
>>> axScatter.scatter(x, y)
>>> axHistx.hist(x)
>>> axHisty.hist(y, orientation='horizontal')
>>>
>>> # set the limit of histogram plots
>>> axHistx.set_xlim( axScatter.get_xlim() )
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>>> axHisty.set_ylim( axScatter.get_ylim() )
>>>
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/copula_1.png')

Fig. 10.1 shows the resulted plot.

Figure 10.1: Scatter plot along with marginal histograms.

Now, let us try to simulate ensemble of data using copula. I have written a library, ambhas.copula
to deal with copulas. This library has three copulas (Frank, Clayton, and Gumbel) in it. First we
import the library, then we initialize the class.

>>> from ambhas.copula import Copula
>>> Copula(x, y, 'frank')

We can get the value of Kendall’s tau, and the parameter of Frank copula by attributes tau and
theta respectively.

>>> print(foo.tau)
0.179797979798
>>> print(foo.theta)
1.66204833984

We can generate the ensemble using Frank copula.

>>> x1,y1 = foo.generate_xy()

Now, we can plot the simulated data with original data.

>>> plt.scatter(x1,y1, color='g')
>>> plt.scatter(x,y, color='r')
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>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.savefig('/home/tomer/my_books/python_in_hydrology/images/copula_2.png')

Fig. 10.2 shows the resulted plot.

Figure 10.2: Simulated ensemble along with original data.

10.2 Multivariate distribution
So far, we have generated random variables with only univariate distribution. In this section we
will be generating multivariate nominally distributed random variable by specifying the mean and
covariance matrix to np.random.multivariate_normal.

>>> mean = [0,5]
>>> cov = [[1,0.4],[0.4,1]]
>>> data = np.random.multivariate_normal(mean,cov,5000)

We can check its mean and covariance.

>>> print(data.mean(axis=0))
[ 0.00814047 5.00406784]
>>> print(np.corrcoef(data.T))
[[ 1. 0.40707918]
[ 0.40707918 1. ]]

We see that generated random variable had mean and covariance close to the specified input.
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Appendix A

Install library

A.1 Basemap
The installation of new library looks very easy by use of pip, but in reality it is not true. Each
library has its own dependency, and the way to get those dependency, and hence needs special
way to install them. We used Basemap in making maps. So lets install this library. This library
is available for download from http://sourceforge.net/projects/matplotlib/files/
matplotlib-toolkits/. Download the latest version of basemap from this weblink. There are
some *.exe files meant to be install in Windows. I have not tired them, if you are window you can
try them first, if these does work for some reason, then you can download source (*.tar.gz) file.

After downloading any new library, first you should try,

>>> sudo pip install /path/to/*.tar.gz

if this works, then installation is really easy.

Now, unzip/untar the downloaded *.tar.gz file. If there is setup.py file in the directory, then you
should run the following command (after going into the folder),

>>> sudo python setup.py install

If this fails, or there is no file, setup.py then, you should read either readme or install file.
Atleast one of them will tell, how to install the library. In the case of basemap library, we see that
some instructions are given in the section, ‘install’ in the file README. It says the first we need to
install the geos library, and says that we can install by going to geos sub directory in the basemap
directory, and issuing the following commands:

>>> sudo make
>>> sudo make install

Now, the geos library is installed, you can go back to the basemap directory, and installed it by
issuing the following command:

>>> sudo python setup.py install

http://sourceforge.net/projects/matplotlib/files/matplotlib-toolkits/
http://sourceforge.net/projects/matplotlib/files/matplotlib-toolkits/
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Execute, 4
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Fedora, 2
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Mac OS, 2
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PDF, 45
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Pie, 83
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Q-Q plot, 89

rand, 23
randn, 23
Raster, 69
Raster, read, 74
Raster, write, 72
ravel, 28
rcparams, 81
relfreq, 44

scatter, 34
scikits.timeseries, 81
semicolon (;), 30
shape, 27
Shapefile, 73
Spearman’s correlation, 56
Statement, break, 18
Statement, continue, 18
Statement, if, 16
Statement, pass, 18
Statement, while, 16
Strings, 8
subplot, 36

T-test, 54
Text file, 101
Type of errors, 4

Ubuntu/Debian, 2
Upgrade packages, 3
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Vector, read, 75
Vector, write, 73

Windows, 2
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xlim, 34
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