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Preface

0.1 Why I wrote this book

This book is inspired by boredom and fascination: boredom with the usual presentation of
data structures and algorithms, and fascination with complex systems. The problem with
data structures is that they are often taught without a motivating context; the problem with
complexity science is that it is usually not taught at all.

In 2005 I developed a new class at Olin College where students read about topics in com-
plexity, implement experiments in Python, and learn about algorithms and data structures.
I wrote the first draft of this book when I taught the class again in 2008.

For the third offering, in 2011, I prepared the book for publication and invited the students
to submit their work, in the form of case studies, for inclusion in the book. I recruited 9
professors at Olin to serve as a program committee and choose the reports that were ready
for publication. The case studies that met the standard are included in this book. For the
next edition, we invite additional submissions from readers (see Appendix A).

0.2 Suggestions for teachers

This book is intended as a scaffold for an intermediate-level college class in Python pro-
gramming and algorithms. My class uses the following structure:

Reading Complexity science is a collection of diverse topics. There are many intercon-
nections, but it takes time to see them. To help students see the big picture, I give
them readings from popular presentations of work in the field. My reading list, and
suggestions on how to use it, are in Appendix B.

Exercises This book presents a series of exercises; many of them ask students to reimple-
ment seminal experiments and extend them. One of the attractions of complexity is
that the research frontier is accessible with moderate programming skills and under-
graduate mathematics.

Discussion The topics in this book raise questions in the philosophy of science; these top-
ics lend themselves to further reading and classroom discussion.
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Case studies In my class, we spend almost half the semester on case studies. Students
participate in an idea generation process, form teams, and work for 6-7 weeks on a
series of experiments, then present them in the form of a publishable 4-6 page report.

An outline of the course and my notes are available at https://sites.google.com/site/
compmodolin.

0.3 Suggestions for autodidacts

In 2009-10 I was a Visiting Scientist at Google, working in their Cambridge office. One of
the things that impressed me about the software engineers I worked with was their broad
intellectual curiosity and drive to expand their knowledge and skills.

I hope this book helps people like them explore a set of topics and ideas they might not
encounter otherwise, practice programming skills in Python, and learn more about data
structures and algorithms (or review material that might have been less engaging the first
time around).

Some features of this book intended for autodidacts are:

Technical depth There are many books about complex systems, but most are written for
a popular audience. They usually skip the technical details, which is frustrating for
people who can handle it. This book presents the mathematics and other technical
content you need to really understand this work.

Further reading Throughout the book, I include pointers to further reading, including
original papers (most of which are available electronically) and related articles from
Wikipedia1 and other sources.

Exercises and (some) solutions For many of the exercises, I provide code to get you
started, and solutions if you get stuck or want to compare your code to mine.

Opportunity to contribute If you explore a topic not covered in this book, reimplement
an interesting experiment, or perform one of your own, I invite you to submit a case
study for possible inclusion in the next edition of the book. See Appendix A for
details.

This book will continue to be a work in progress. You can read about ongoing develop-
ments at http://www.facebook.com/thinkcomplexity.

Allen B. Downey
Professor of Computer Science
Olin College of Engineering
Needham, MA

1Some professors have an allergic reaction to Wikipedia, on the grounds that students depend too heavily on
an unreliable source. Since many of my references are Wikipedia articles, I want to explain my thinking. First, the
articles on complexity science and related topics tend to be very good; second, they are written at a level that is
accessible after you have read this book (but sometimes not before); and finally, they are freely available to readers
all over the world. If there is a danger in sending readers to these references, it is not that they are unreliable, but
that the readers won’t come back! (see http://xkcd.com/903).
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Contributor List

If you have a suggestion or correction, please send email to downey@allendowney.com. If I
make a change based on your feedback, I will add you to the contributor list (unless you
ask to be omitted).

If you include at least part of the sentence the error appears in, that makes it easy for me to
search. Page and section numbers are fine, too, but not quite as easy to work with. Thanks!

• Richard Hollands pointed out several typos.

• John Harley, Jeff Stanton, Colden Rouleau and Keerthik Omanakuttan are Computational
Modeling students who pointed out typos.

• Muhammad Najmi bin Ahmad Zabidi caught some typos.

• Phillip Loh, Corey Dolphin, Noam Rubin and Julian Ceipek found typos and made helpful
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• Jose Oscar Mur-Miranda found several typos.

• I am grateful to the program committee that read and selected the case studies included in
this book: Sarah Spence Adams, John Geddes, Stephen Holt, Vincent Manno, Robert Martello,
Amon Millner, José Oscar Mur-Miranda, Mark Somerville, and Ursula Wolz.

• Sebastian Schöner sent two pages of typos!

• Jonathan Harford found a code error.

• Philipp Marek sent a number of corrections.

• Alex Hantman found a missing word.
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Chapter 1

Complexity Science

1.1 What is this book about?

This book is about data structures and algorithms, intermediate programming in Python,
computational modeling and the philosophy of science:

Data structures and algorithms: A data structure is a collection of data elements orga-
nized in a way that supports particular operations. For example, a Python dictionary
organizes key-value pairs in a way that provides fast mapping from keys to values,
but mapping from values to keys is slower.

An algorithm is a mechanical process for performing a computation. Designing effi-
cient programs often involves the co-evolution of data structures and the algorithms
that use them. For example, in the first few chapters I present graphs, data structures
that implement graphs, and graph algorithms based on those data structures.

Python programming: This book picks up where Think Python leaves off. I assume that
you have read that book or have equivalent knowledge of Python. I try to emphasize
fundamental ideas that apply to programming in many languages, but along the way
you will learn some useful features that are specific to Python.

Computational modeling: A model is a simplified description of a system used for simu-
lation or analysis. Computational models are designed to take advantage of cheap,
fast computation.

Philosophy of science: The experiments and results in this book raise questions relevant
to the philosophy of science, including the nature of scientific laws, theory choice,
realism and instrumentalism, holism and reductionism, and epistemology.

This book is also about complexity science, which is an interdisciplinary field—at the in-
tersection of mathematics, computer science and natural science—that focuses on discrete
models of physical systems. In particular, it focuses on complex systems, which are sys-
tems with many interacting components.
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Complex systems include networks and graphs, cellular automata, agent-based models
and swarms, fractals and self-organizing systems, chaotic systems and cybernetic systems.
These terms might not mean much to you at this point. We will get to them soon, but you
can get a preview at http://en.wikipedia.org/wiki/Complex_systems.

1.2 A new kind of science
In 2002 Stephen Wolfram published A New Kind of Science where he presents his and oth-
ers’ work on cellular automata and describes a scientific approach to the study of compu-
tational systems. We’ll get back to Wolfram in Chapter 6, but I want to borrow his title for
something a little broader.

I think complexity is a “new kind of science” not because it applies the tools of science
to a new subject, but because it uses different tools, allows different kinds of work, and
ultimately changes what we mean by “science.”

To demonstrate the difference, I’ll start with an example of classical science: suppose some-
one asked you why planetary orbits are elliptical. You might invoke Newton’s law of
universal gravitation and use it to write a differential equation that describes planetary
motion. Then you could solve the differential equation and show that the solution is an
ellipse. Voilà!

Most people find this kind of explanation satisfying. It includes a mathematical
derivation—so it has some of the rigor of a proof—and it explains a specific observation,
elliptical orbits, by appealing to a general principle, gravitation.

Let me contrast that with a different kind of explanation. Suppose you move to a city
like Detroit that is racially segregated, and you want to know why it’s like that. If you
do some research, you might find a paper by Thomas Schelling called “Dynamic Models of
Segregation,” which proposes a simple model of racial segregation (a copy is available from
http://statistics.berkeley.edu/~aldous/157/Papers/Schelling_Seg_Models.pdf).

Here is a summary of the paper (from Chapter 10):

The Schelling model of the city is an array of cells where each cell represents a
house. The houses are occupied by two kinds of “agents,” labeled red and blue,
in roughly equal numbers. About 10% of the houses are empty.
At any point in time, an agent might be happy or unhappy, depending on the
other agents in the neighborhood. In one version of the model, agents are happy
if they have at least two neighbors like themselves, and unhappy if they have
one or zero.
The simulation proceeds by choosing an agent at random and checking to see
whether it is happy. If so, nothing happens; if not, the agent chooses one of the
unoccupied cells at random and moves.

If you start with a simulated city that is entirely unsegregated and run the model for a
short time, clusters of similar agents appear. As time passes, the clusters grow and coa-
lesce until there are a small number of large clusters and most agents live in homogeneous
neighborhoods.
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The degree of segregation in the model is surprising, and it suggests an explanation of
segregation in real cities. Maybe Detroit is segregated because people prefer not to be
greatly outnumbered and will move if the composition of their neighborhoods makes them
unhappy.

Is this explanation satisfying in the same way as the explanation of planetary motion? Most
people would say not, but why?

Most obviously, the Schelling model is highly abstract, which is to say not realistic. It is
tempting to say that people are more complex than planets, but when you think about it,
planets are just as complex as people (especially the ones that have people).

Both systems are complex, and both models are based on simplifications; for example, in
the model of planetary motion we include forces between the planet and its sun, and ignore
interactions between planets.

The important difference is that, for planetary motion, we can defend the model by show-
ing that the forces we ignore are smaller than the ones we include. And we can extend the
model to include other interactions and show that the effect is small. For Schelling’s model
it is harder to justify the simplifications.

To make matters worse, Schelling’s model doesn’t appeal to any physical laws, and it uses
only simple computation, not mathematical derivation. Models like Schelling’s don’t look
like classical science, and many people find them less compelling, at least at first. But as
I will try to demonstrate, these models do useful work, including prediction, explanation,
and design. One of the goals of this book is to explain how.

1.3 Paradigm shift?

When I describe this book to people, I am often asked if this new kind of science is a
paradigm shift. I don’t think so, and here’s why.

Thomas Kuhn introduced the term “paradigm shift” in The Structure of Scientific Revolutions
in 1962. It refers to a process in the history of science where the basic assumptions of a field
change, or where one theory is replaced by another. He presents as examples the Coper-
nican revolution, the displacement of phlogiston by the oxygen model of combustion, and
the emergence of relativity.

The development of complexity science is not the replacement of an older model, but (in
my opinion) a gradual shift in the criteria models are judged by, and in the kinds of models
that are considered acceptable.

For example, classical models tend to be law-based, expressed in the form of equations,
and solved by mathematical derivation. Models that fall under the umbrella of complexity
are often rule-based, expressed as computations, and simulated rather than analyzed.

Not everyone finds these models satisfactory. For example, in Sync, Steven Strogatz writes
about his model of spontaneous synchronization in some species of fireflies. He presents a
simulation that demonstrates the phenomenon, but then writes:
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I repeated the simulation dozens of times, for other random initial conditions
and for other numbers of oscillators. Sync every time. [...] The challenge now
was to prove it. Only an ironclad proof would demonstrate, in a way that no
computer ever could, that sync was inevitable; and the best kind of proof would
clarify why it was inevitable.

Strogatz is a mathematician, so his enthusiasm for proofs is understandable, but his proof
doesn’t address what is, to me, the most interesting part the phenomenon. In order to prove
that “sync was inevitable,” Strogatz makes several simplifying assumptions, in particular
that each firefly can see all the others.

In my opinion, it is more interesting to explain how an entire valley of fireflies can syn-
chronize despite the fact that they cannot all see each other. How this kind of global behavior
emerges from local interactions is the subject of Chapter 10. Explanations of these phe-
nomena often use agent-based models, which explore (in ways that would be difficult or
impossible with mathematical analysis) the conditions that allow or prevent synchroniza-
tion.

I am a computer scientist, so my enthusiasm for computational models is probably no
surprise. I don’t mean to say that Strogatz is wrong, but rather that people disagree about
what questions to ask and what tools to use to answer them. These decisions are based on
value judgments, so there is no reason to expect agreement.

Nevertheless, there is rough consensus among scientists about which models are consid-
ered good science, and which others are fringe science, pseudoscience, or not science at all.

I claim, and this is a central thesis of this book, that the criteria this consensus is based on
change over time, and that the emergence of complexity science reflects a gradual shift in
these criteria.

1.4 The axes of scientific models

I have described classical models as based on physical laws, expressed in the form of equa-
tions, and solved by mathematical analysis; conversely, models of complexity systems are
often based on simple rules and implemented as computations.

We can think of this trend as a shift over time along two axes:

Equation-based→ simulation-based

Analysis→ computation

The new kind of science is different in several other ways. I present them here so you know
what’s coming, but some of them might not make sense until you have seen the examples
later in the book.

Continuous→ discrete Classical models tend to be based on continuous mathematics,
like calculus; models of complex systems are often based on discrete mathematics,
including graphs and cellular automata.
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Linear→ non-linear Classical models are often linear, or use linear approximations to
non-linear systems; complexity science is more friendly to non-linear models. One
example is chaos theory1.

Deterministic→ stochastic Classical models are usually deterministic, which may reflect
underlying philosophical determinism, discussed in Chapter 6; complex models of-
ten feature randomness.

Abstract→ detailed In classical models, planets are point masses, planes are frictionless,
and cows are spherical (see http://en.wikipedia.org/wiki/Spherical_cow). Sim-
plifications like these are often necessary for analysis, but computational models can
be more realistic.

One, two→many In celestial mechanics, the two-body problem can be solved analyti-
cally; the three-body problem cannot. Where classical models are often limited to
small numbers of interacting elements, complexity science works with larger com-
plexes (which is where the name comes from).

Homogeneous→ composite In classical models, the elements tend to be interchangeable;
complex models more often include heterogeneity.

These are generalizations, so we should not take them too seriously. And I don’t mean to
deprecate classical science. A more complicated model is not necessarily better; in fact, it
is usually worse.

Also, I don’t mean to say that these changes are abrupt or complete. Rather, there is a
gradual migration in the frontier of what is considered acceptable, respectable work. Some
tools that used to be regarded with suspicion are now common, and some models that
were widely accepted are now regarded with scrutiny.

For example, when Appel and Haken proved the four-color theorem in 1976, they used
a computer to enumerate 1,936 special cases that were, in some sense, lemmas of their
proof. At the time, many mathematicians did not consider the theorem truly proved. Now
computer-assisted proofs are common and generally (but not universally) accepted.

Conversely, a substantial body of economic analysis is based on a model of human behavior
called “Economic man,” or, with tongue in cheek, Homo economicus. Research based on
this model was highly-regarded for several decades, especially if it involved mathematical
virtuosity. More recently, this model is treated with more skepticism, and models that
include imperfect information and bounded rationality are hot topics.

1.5 A new kind of model

Complex models are often appropriate for different purposes and interpretations:

Predictive→ explanatory Schelling’s model of segregation might shed light on a complex
social phenomenon, but it is not useful for prediction. On the other hand, a simple
model of celestial mechanics can predict solar eclipses, down to the second, years in
the future.

1Chaos is not covered in this book, but you can read about it at http://en.wikipedia.org/wiki/Chaos.
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Realism→ instrumentalism Classical models lend themselves to a realist interpretation;
for example, most people accept that electrons are real things that exist. Instrumen-
talism is the view that models can be useful even if the entities they postulate don’t
exist. George Box wrote what might be the motto of instrumentalism: “All models
are wrong, but some are useful."

Reductionism→ holism Reductionism is the view that the behavior of a system can be
explained by understanding its components. For example, the periodic table of the
elements is a triumph of reductionism, because it explains the chemical behavior
of elements with a simple model of the electrons in an atom. Holism is the view
that some phenomena that appear at the system level do not exist at the level of
components, and cannot be explained in component-level terms.

We get back to explanatory models in Chapter 5, instrumentalism in Chapter 7 and holism
in Chapter 9.

1.6 A new kind of engineering

I have been talking about complex systems in the context of science, but complexity is also
a cause, and effect, of changes in engineering and the organization of social systems:

Centralized→ decentralized Centralized systems are conceptually simple and easier to
analyze, but decentralized systems can be more robust. For example, in the World
Wide Web clients send requests to centralized servers; if the servers are down, the
service is unavailable. In peer-to-peer networks, every node is both a client and a
server. To take down the service, you have to take down every node.

Isolation→ interaction In classical engineering, the complexity of large systems is man-
aged by isolating components and minimizing interactions. This is still an important
engineering principle; nevertheless, the availability of cheap computation makes it
increasingly feasible to design systems with complex interactions between compo-
nents.

One-to-many→many-to-many In many communication systems, broadcast services are
being augmented, and sometimes replaced, by services that allow users to commu-
nicate with each other and create, share, and modify content.

Top-down→ bottom-up In social, political and economic systems, many activities that
would normally be centrally organized now operate as grassroots movements. Even
armies, which are the canonical example of hierarchical structure, are moving toward
devolved command and control.

Analysis→ computation In classical engineering, the space of feasible designs is limited
by our capability for analysis. For example, designing the Eiffel Tower was possible
because Gustave Eiffel developed novel analytic techniques, in particular for dealing
with wind load. Now tools for computer-aided design and analysis make it possible
to build almost anything that can be imagined. Frank Gehry’s Guggenheim Museum
Bilbao is my favorite example.
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Design→ search Engineering is sometimes described as a search for solutions in a land-
scape of possible designs. Increasingly, the search process can be automated. For ex-
ample, genetic algorithms explore large design spaces and discover solutions human
engineers would not imagine (or like). The ultimate genetic algorithm, evolution,
notoriously generates designs that violate the rules of human engineering.

1.7 A new kind of thinking

We are getting farther afield now, but the shifts I am postulating in the criteria of scientific
modeling are related to 20th Century developments in logic and epistemology.

Aristotelian logic→many-valued logic In traditional logic, any proposition is either true
or false. This system lends itself to math-like proofs, but fails (in dramatic ways) for
many real-world applications. Alternatives include many-valued logic, fuzzy logic,
and other systems designed to handle indeterminacy, vagueness, and uncertainty.
Bart Kosko discusses some of these systems in Fuzzy Thinking.

Frequentist probability→ Bayesianism Bayesian probability has been around for cen-
turies, but was not widely used until recently, facilitated by the availability of cheap
computation and the reluctant acceptance of subjectivity in probabilistic claims.
Sharon Bertsch McGrayne presents this history in The Theory That Would Not Die.

Objective→ subjective The Enlightenment, and philosophic modernism, are based on
belief in objective truth; that is, truths that are independent of the people that hold
them. 20th Century developments including quantum mechanics, Gödel’s Incom-
pleteness Theorem, and Kuhn’s study of the history of science called attention to
seemingly unavoidable subjectivity in even “hard sciences” and mathematics. Re-
becca Goldstein presents the historical context of Gödel’s proof in Incompleteness.

Physical law→ theory→model Some people distinguish between laws, theories, and
models, but I think they are the same thing. People who use “law” are likely to
believe that it is objectively true and immutable; people who use “theory” concede
that it is subject to revision; and “model” concedes that it is based on simplification
and approximation.

Some concepts that are called “physical laws” are really definitions; others are, in
effect, the assertion that a model predicts or explains the behavior of a system partic-
ularly well. We come back to the nature of physical models in Sections 5.7, 6.10 and
9.5.

Determinism→ indeterminism Determinism is the view that all events are caused, in-
evitably, by prior events. Forms of indeterminism include randomness, probabilistic
causation, and fundamental uncertainty, and indeterminacy. We come back to this
topic in Section 6.6 and 10.7
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These trends are not universal or complete, but the center of opinion is shifting along these
axes. As evidence, consider the reaction to Thomas Kuhn’s The Structure of Scientific Rev-
olutions, which was reviled when it was published and now considered almost uncontro-
versial.

These trends are both cause and effect of complexity science. For example, highly ab-
stracted models are more acceptable now because of the diminished expectation that there
should be a unique, correct model for every system. Conversely, developments in complex
systems challenge determinism and the related concept of physical law.

This chapter is an overview of the themes coming up in the book, but not all of it will make
sense before you see the examples. When you get to the end of the book, you might find it
helpful to read this chapter again.



Chapter 2

Graphs

2.1 What’s a graph?

To most people a graph is a visual representation of a data set, like a bar chart or an EKG.
That’s not what this chapter is about.

In this chapter, a graph is an abstraction used to model a system that contains discrete,
interconnected elements. The elements are represented by nodes (also called vertices) and
the interconnections are represented by edges.

For example, you could represent a road map with one node for each city and one edge for
each road between cities. Or you could represent a social network using one node for each
person, with an edge between two people if they are “friends” and no edge otherwise.

In some graphs, edges have different lengths (sometimes called “weights” or “costs”). For
example, in a road map, the length of an edge might represent the distance between two
cities, or the travel time, or bus fare. In a social network there might be different kinds of
edges to represent different kinds of relationships: friends, business associates, etc.

Edges may be undirected, if they represent a relationship that is symmetric, or directed.
In a social network, friendship is usually symmetric: if A is friends with B then B is friends
with A. So you would probably represent friendship with an undirected edge. In a road
map, you would probably represent a one-way street with a directed edge.

Graphs have interesting mathematical properties, and there is a branch of mathematics
called graph theory that studies them.

Graphs are also useful, because there are many real world problems that can be solved
using graph algorithms. For example, Dijkstra’s shortest path algorithm is an efficient way
to find the shortest path from a node to all other nodes in a graph. A path is a sequence of
nodes with an edge between each consecutive pair.

Sometimes the connection between a real world problem and a graph algorithm is obvious.
In the road map example, it is not hard to imagine using a shortest path algorithm to find
the route between two cities that minimizes distance (or time, or cost).
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In other cases it takes more effort to represent a problem in a form that can be solved with
a graph algorithm, and then interpret the solution.

For example, a complex system of radioactive decay can be represented by a graph with
one node for each nuclide (type of atom) and an edge between two nuclides if one
can decay into the other. A path in this graph represents a decay chain. See http:

//en.wikipedia.org/wiki/Radioactive_decay.

The rate of decay between two nuclides is characterized by a decay constant, λ, measured
in becquerels (Bq) or decay events per second. You might be more familiar with half-life,
t1/2, which is the expected time until half of a sample decays. You can convert from one
characterization to the other using the relation t1/2 = ln 2/λ.

In our best current model of physics, nuclear decay is a fundamentally random process, so
it is impossible to predict when an atom will decay. However, given λ, the probability that
an atom decays during a short time interval dt is λdt.

In a graph with multiple decay chains, the probability of a given path is the product of the
probabilities of each decay process in the path.

Now suppose you want to find the decay chain with the highest probability. You could
do it by assigning each edge a “length” of − log λ and using a shortest path algorithm.
Why? Because the shortest path algorithm adds up the lengths of the edges, and adding
up log-probabilities is the same as multiplying probabilities. Also, because the logarithms
are negated, the smallest sum corresponds to the largest probability. So the shortest path
corresponds to the most likely decay chain.

This is an example of a common and useful process in applying graph algorithms:

Reduce a real-world problem to an instance of a graph problem.

Apply a graph algorithm to compute the result efficiently.

Interpret the result of the computation in terms of a solution to the original problem.

We will see other examples of this process soon.
Exercise 2.1. Read the Wikipedia page about graphs at http: // en. wikipedia. org/ wiki/
Graph_ ( mathematics) and answer the following questions:

1. What is a simple graph? In the rest of this section, we will be assuming that all graphs are
simple graphs. This is a common assumption for many graph algorithms—so common it is
often unstated.

2. What is a regular graph? What is a complete graph? Prove that a complete graph is regular.

3. What is a path? What is a cycle?

4. What is a forest? What is a tree? Note: a graph is connected if there is a path from every
node to every other node.
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Figure 2.1: Examples of graphs.

2.2 Representing graphs

Graphs are usually drawn with squares or circles for nodes and lines for edges. In Fig-
ure 2.1, the graph on the left represents a social network with three people.

In the graph on the right, the weights of the edges are the approximate travel times, in
hours, between cities in the northeast United States. In this case the placement of the nodes
corresponds roughly to the geography of the cities, but in general the layout of a graph is
arbitrary.

To implement graph algorithms, you have to figure out how to represent a graph in the
form of a data structure. But to choose the best data structure, you have to know which
operations the graph should support.

To get out of this chicken-and-egg problem, I will present a data structure that is a good
choice for many graph algorithms. Later we come back and evaluate its pros and cons.

Here is an implementation of a graph as a dictionary of dictionaries:

class Graph(dict):

def __init__(self, vs=[], es=[]):

"""create a new graph. (vs) is a list of vertices;

(es) is a list of edges."""

for v in vs:

self.add_vertex(v)

for e in es:

self.add_edge(e)

def add_vertex(self, v):

"""add (v) to the graph"""

self[v] = {}

def add_edge(self, e):

"""add (e) to the graph by adding an entry in both directions.
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If there is already an edge connecting these Vertices, the

new edge replaces it.

"""

v, w = e

self[v][w] = e

self[w][v] = e

The first line declares that Graph inherits from the built-in type dict, so a Graph object has
all the methods and operators of a dictionary.

More specifically, a Graph is a dictionary that maps from a Vertex v to an inner dictionary
that maps from a Vertex w to an Edge that connects v and w. So if g is a graph, g[v][w]
maps to an Edge if there is one and raises a KeyError otherwise.

__init__ takes a list of vertices and a list of edges as optional parameters. If they are
provided, it calls add_vertex and add_edge to add the vertices and edges to the graph.

Adding a vertex to a graph means making an entry for it in the outer dictionary. Adding an
edge makes two entries, both pointing to the same Edge. So this implementation represents
an undirected graph.

Here is the definition for Vertex:

class Vertex(object):

def __init__(self, label=''):

self.label = label

def __repr__(self):

return 'Vertex(%s)' % repr(self.label)

__str__ = __repr__

A Vertex is just an object that has a label attribute. We can add attributes later, as needed.

__repr__ is a special function that returns a string representation of an object. It is similar
to __str__ except that the return value from __str__ is intended to be readable for people,
and the return value from __repr__ is supposed to be a legal Python expression.

The built-in function str invokes __str__ on an object; similarly the built-in function repr

invokes __repr__.

In this case Vertex.__str__ and Vertex.__repr__ refer to the same function, so we get
the same string either way.

Here is the definition for Edge:

class Edge(tuple):

def __new__(cls, e1, e2):

return tuple.__new__(cls, (e1, e2))

def __repr__(self):

return 'Edge(%s, %s)' % (repr(self[0]), repr(self[1]))

__str__ = __repr__
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Edge inherits from the built-in type tuple and overrides the __new__ method. When
you invoke an object constructor, Python invokes __new__ to create the object and then
__init__ to initialize the attributes.

For mutable objects it is most common to override __init__ and use the default imple-
mentation of __new__, but because Edges inherit from tuple, they are immutable, which
means that you can’t modify the elements of the tuple in __init__. By overriding __new__,
we can use the parameters to initialize the elements of the tuple.

Here is an example that creates two vertices and an edge:

v = Vertex('v')

w = Vertex('w')

e = Edge(v, w)

print e

Inside Edge.__str__ the term self[0] refers to v and self[1] refers to w. So the output
when you print e is:

Edge(Vertex('v'), Vertex('w'))

Now we can assemble the edge and vertices into a graph:

g = Graph([v, w], [e])

print g

The output looks like this (with a little formatting):

{Vertex('w'): {Vertex('v'): Edge(Vertex('v'), Vertex('w'))},

Vertex('v'): {Vertex('w'): Edge(Vertex('v'), Vertex('w'))}}

We didn’t have to write Graph.__str__; it is inherited from dict.
Exercise 2.2. In this exercise you write methods that will be useful for many of the Graph algo-
rithms that are coming up.

1. Download thinkcomplex. com/ GraphCode. py , which contains the code in this chapter.
Run it as a script and make sure the test code in main does what you expect.

2. Make a copy of GraphCode.py called Graph.py. Add the following methods to Graph,
adding test code as you go.

3. Write a method named get_edge that takes two vertices and returns the edge between them
if it exists and None otherwise. Hint: use a try statement.

4. Write a method named remove_edge that takes an edge and removes all references to it from
the graph.

5. Write a method named vertices that returns a list of the vertices in a graph.

6. Write a method named edges that returns a list of edges in a graph. Note that in our repre-
sentation of an undirected graph there are two references to each edge.

7. Write a method named out_vertices that takes a Vertex and returns a list of the adjacent
vertices (the ones connected to the given node by an edge).
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8. Write a method named out_edges that takes a Vertex and returns a list of edges connected
to the given Vertex.

9. Write a method named add_all_edges that starts with an edgeless Graph and makes a
complete graph by adding edges between all pairs of vertices.

Test your methods by writing test code and checking the output. Then download thinkcomplex.

com/ GraphWorld. py . GraphWorld is a simple tool for generating visual representations of
graphs. It is based on the World class in Swampy, so you might have to install Swampy first:
see thinkpython. com/ swampy .

Read through GraphWorld.py to get a sense of how it works. Then run it. It should import your
Graph.py and then display a complete graph with 10 vertices.
Exercise 2.3. Write a method named add_regular_edges that starts with an edgeless graph and
adds edges so that every vertex has the same degree. The degree of a node is the number of edges it
is connected to.

To create a regular graph with degree 2 you would do something like this:

vertices = [ ... list of Vertices ... ]

g = Graph(vertices, [])

g.add_regular_edges(2)

It is not always possible to create a regular graph with a given degree, so you should figure out and
document the preconditions for this method.

To test your code, you might want to create a file named GraphTest.py that imports Graph.py
and GraphWorld.py, then generates and displays the graphs you want to test.

2.3 Random graphs
A random graph is just what it sounds like: a graph with edges generated at random. Of
course, there are many random processes that can generate graphs, so there are many kinds
of random graphs. One interesting kind is the Erdős-Rényi model, denoted G(n, p), which
generates graphs with n nodes, where the probability is p that there is an edge between
any two nodes. See http://en.wikipedia.org/wiki/Erdos-Renyi_model.
Exercise 2.4. Create a file named RandomGraph.py and define a class named RandomGraph that
inherits from Graph and provides a method named add_random_edges that takes a probability p

as a parameter and, starting with an edgeless graph, adds edges at random so that the probability is
p that there is an edge between any two nodes.

2.4 Connected graphs
A graph is connected if there is a path from every node to every other node. See http:

//en.wikipedia.org/wiki/Connectivity_(graph_theory).

There is a simple algorithm to check whether a graph is connected. Start at any vertex and
conduct a search (usually a breadth-first-search or BFS), marking all the vertices you can
reach. Then check to see whether all vertices are marked.
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You can read about breadth-first-search at http://en.wikipedia.org/wiki/

Breadth-first_search.

In general, when you process a node, we say that you are visiting it.

In a search, you visit a node by marking it (so you can tell later that it has been visited)
then visiting any unmarked vertices it is connected to.

In a breadth-first-search, you visit nodes in the order they are discovered. You can use a
queue or a “worklist” to keep them in order. Here’s how it works:

1. Start with any vertex and add it to the queue.

2. Remove a vertex from the queue and mark it. If it is connected to any unmarked
vertices, add them to the queue.

3. If the queue is not empty, go back to Step 2.
Exercise 2.5. Write a Graph method named is_connected that returns True if the Graph is
connected and False otherwise.

2.5 Paul Erdős: peripatetic mathematician, speed freak
Paul Erdős was a Hungarian mathematician who spent most of his career (from 1934 until
his death in 1992) living out of a suitcase, visiting colleagues at universities all over the
world, and authoring papers with more than 500 collaborators.

He was a notorious caffeine addict and, for the last 20 years of his life, an enthusiastic user
of amphetamines. He attributed at least some of his productivity to the use of these drugs;
after giving them up for a month to win a bet, he complained that the only result was that
mathematics had been set back by a month1.

In the 1960s he and Afréd Rényi wrote a series of papers introducing the Erdős-
Rényi model of random graphs and studying their properties. The second is available
from http://www.renyi.hu/~p_erdos/1960-10.pdf.

One of their most surprising results is the existence of abrupt changes in the characteristics
of random graphs as random edges are added. They showed that for a number of graph
properties there is a threshold value of the probability p below which the property is rare
and above which it is almost certain. This transition is sometimes called a “phase change”
by analogy with physical systems that change state at some critical value of temperature.
See http://en.wikipedia.org/wiki/Phase_transition.
Exercise 2.6. One of the properties that displays this kind of transition is connectedness. For
a given size n, there is a critical value, p∗, such that a random graph G(n, p) is unlikely to be
connected if p < p∗ and very likely to be connected if p > p∗.

Write a program that tests this result by generating random graphs for values of n and p and
computes the fraction of them that are connected.

How does the abruptness of the transition depend on n?

You can download my solution from thinkcomplex. com/ RandomGraph. py .
1Much of this biography follows http://en.wikipedia.org/wiki/Paul_Erdos
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2.6 Iterators
If you have read the documentation of Python dictionaries, you might have noticed the
methods iterkeys, itervalues and iteritems. These methods are similar to keys, values
and items, except that instead of building a new list, they return iterators.

An iterator is an object that provides a method named next that returns the next element
in a sequence. Here is an example that creates a dictionary and uses iterkeys to traverse
the keys.

>>> d = dict(a=1, b=2)

>>> iter = d.iterkeys()

>>> print iter.next()

a

>>> print iter.next()

b

>>> print iter.next()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

The first time next is invoked, it returns the first key from the dictionary (the order of the
keys is arbitrary). The second time it is invoked, it returns the second element. The third
time, and every time thereafter, it raises a StopIteration exception.

An iterator can be used in a for loop; for example, the following is a common idiom for
traversing the key-value pairs in a dictionary:

for k, v in d.iteritems():

print k, v

In this context, iteritems is likely to be faster than items because it doesn’t have to build
the entire list of tuples; it reads them from the dictionary as it goes along.

But it is only safe to use the iterator methods if you do not add or remove dictionary keys
inside the loop. Otherwise you get an exception:

>>> d = dict(a=1)

>>> for k in d.iterkeys():

... d['b'] = 2

...

RuntimeError: dictionary changed size during iteration

Another limitation of iterators is that they do not support index operations.

>>> iter = d.iterkeys()

>>> print iter[1]

TypeError: 'dictionary-keyiterator' object is unsubscriptable

If you need indexed access, you should use keys. Alternatively, the Python module
itertools provides many useful iterator functions.

A user-defined object can be used as an iterator if it provides methods named next and
__iter__. The following example is an iterator that always returns True:
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class AllTrue(object):

def next(self):

return True

def __iter__(self):

return self

The __iter__ method for iterators returns the iterator itself. This protocol makes it possible
to use iterators and sequences interchangeably in many contexts.

Iterators like AllTrue can represent an infinite sequence. They are useful as an argument
to zip:

>>> print zip('abc', AllTrue())

[('a', True), ('b', True), ('c', True)]

2.7 Generators

For many purposes the easiest way to make an iterator is to write a generator, which is a
function that contains a yield statement. yield is similar to return, except that the state
of the running function is stored and can be resumed.

For example, here is a generator that yields successive letters of the alphabet:
def generate_letters():

for letter in 'abc':

yield letter

When you call this function, the return value is an iterator:
>>> iter = generate_letters()

>>> print iter

<generator object at 0xb7d4ce4c>

>>> print iter.next()

a

>>> print iter.next()

b

And you can use an iterator in a for loop:
>>> for letter in generate_letters():

... print letter

...

a

b

c

A generator with an infinite loop returns an iterator that never terminates. For example,
here’s a generator that cycles through the letters of the alphabet:
def alphabet_cycle():

while True:

for c in string.lowercase:

yield c
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Exercise 2.7. Write a generator that yields an infinite sequence of alpha-numeric identifiers, start-
ing with a1 through z1, then a2 through z2, and so on.



Chapter 3

Analysis of algorithms

Analysis of algorithms is the branch of computer science that studies the performance of
algorithms, especially their run time and space requirements. See http://en.wikipedia.

org/wiki/Analysis_of_algorithms.

The practical goal of algorithm analysis is to predict the performance of different algo-
rithms in order to guide design decisions.

During the 2008 United States Presidential Campaign, candidate Barack Obama was asked
to perform an impromptu analysis when he visited Google. Chief executive Eric Schmidt
jokingly asked him for “the most efficient way to sort a million 32-bit integers.” Obama
had apparently been tipped off, because he quickly replied, “I think the bubble sort would
be the wrong way to go.” See http://www.youtube.com/watch?v=k4RRi_ntQc8.

This is true: bubble sort is conceptually simple but slow for large datasets. The answer
Schmidt was probably looking for is “radix sort” (see http://en.wikipedia.org/wiki/

Radix_sort)1.

So the goal of algorithm analysis is to make meaningful comparisons between algorithms,
but there are some problems:

• The relative performance of the algorithms might depend on characteristics of the
hardware, so one algorithm might be faster on Machine A, another on Machine B.
The general solution to this problem is to specify a machine model and analyze the
number of steps, or operations, an algorithm requires under a given model.

• Relative performance might depend on the details of the dataset. For example, some
sorting algorithms run faster if the data are already partially sorted; other algorithms
run slower in this case. A common way to avoid this problem is to analyze the worst
case scenario. It is also sometimes useful to analyze average case performance, but it
is usually harder, and sometimes it is not clear what set of cases to average over.

1But if you get a question like this in an interview, I think a better answer is, “The fastest way to sort a million
integers is to use whatever sort function is provided by the language I’m using. Its performance is good enough
for the vast majority of applications, but if it turned out that my application was too slow, I would use a profiler
to see where the time was being spent. If it looked like a faster sort algorithm would have a significant effect on
performance, then I would look around for a good implementation of radix sort.”
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• Relative performance also depends on the size of the problem. A sorting algorithm
that is fast for small lists might be slow for long lists. The usual solution to this
problem is to express run time (or number of operations) as a function of problem
size, and to compare the functions asymptotically as the problem size increases.

The good thing about this kind of comparison that it lends itself to simple classification of
algorithms. For example, if I know that the run time of Algorithm A tends to be propor-
tional to the size of the input, n, and Algorithm B tends to be proportional to n2, then I
expect A to be faster than B for large values of n.

This kind of analysis comes with some caveats, but we’ll get to that later.

3.1 Order of growth

Suppose you have analyzed two algorithms and expressed their run times in terms of the
size of the input: Algorithm A takes 100n + 1 steps to solve a problem with size n; Algo-
rithm B takes n2 + n + 1 steps.

The following table shows the run time of these algorithms for different problem sizes:

Input Run time of Run time of
size Algorithm A Algorithm B

10 1 001 111
100 10 001 10 101

1 000 100 001 1 001 001
10 000 1 000 001 > 1010

At n = 10, Algorithm A looks pretty bad; it takes almost 10 times longer than Algorithm
B. But for n = 100 they are about the same, and for larger values A is much better.

The fundamental reason is that for large values of n, any function that contains an n2 term
will grow faster than a function whose leading term is n. The leading term is the term with
the highest exponent.

For Algorithm A, the leading term has a large coefficient, 100, which is why B does better
than A for small n. But regardless of the coefficients, there will always be some value of n
where an2 > bn.

The same argument applies to the non-leading terms. Even if the run time of Algorithm A
were n + 1000000, it would still be better than Algorithm B for sufficiently large n.

In general, we expect an algorithm with a smaller leading term to be a better algorithm for
large problems, but for smaller problems, there may be a crossover point where another
algorithm is better. The location of the crossover point depends on the details of the algo-
rithms, the inputs, and the hardware, so it is usually ignored for purposes of algorithmic
analysis. But that doesn’t mean you can forget about it.

If two algorithms have the same leading order term, it is hard to say which is better; again,
the answer depends on the details. So for algorithmic analysis, functions with the same
leading term are considered equivalent, even if they have different coefficients.
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An order of growth is a set of functions whose asymptotic growth behavior is considered
equivalent. For example, 2n, 100n and n + 1 belong to the same order of growth, which is
written O(n) in Big-Oh notation and often called linear because every function in the set
grows linearly with n.

All functions with the leading term n2 belong to O(n2); they are quadratic, which is a fancy
word for functions with the leading term n2.

The following table shows some of the orders of growth that appear most commonly in
algorithmic analysis, in increasing order of badness.

Order of Name
growth

O(1) constant
O(logb n) logarithmic (for any b)

O(n) linear
O(n logb n) “en log en”

O(n2) quadratic
O(n3) cubic
O(cn) exponential (for any c)

For the logarithmic terms, the base of the logarithm doesn’t matter; changing bases is the
equivalent of multiplying by a constant, which doesn’t change the order of growth. Sim-
ilarly, all exponential functions belong to the same order of growth regardless of the base
of the exponent. Exponential functions grow very quickly, so exponential algorithms are
only useful for small problems.
Exercise 3.1. Read the Wikipedia page on Big-Oh notation at http: // en. wikipedia. org/
wiki/ Big_ O_ notation and answer the following questions:

1. What is the order of growth of n3 + n2? What about 1000000n3 + n2? What about n3 +
1000000n2?

2. What is the order of growth of (n2 + n) · (n + 1)? Before you start multiplying, remember
that you only need the leading term.

3. If f is in O(g), for some unspecified function g, what can we say about a f + b?

4. If f1 and f2 are in O(g), what can we say about f1 + f2?

5. If f1 is in O(g) and f2 is in O(h), what can we say about f1 + f2?

6. If f1 is in O(g) and f2 is O(h), what can we say about f1 ∗ f2?

Programmers who care about performance often find this kind of analysis hard to swal-
low. They have a point: sometimes the coefficients and the non-leading terms make a real
difference. And sometimes the details of the hardware, the programming language, and
the characteristics of the input make a big difference. And for small problems asymptotic
behavior is irrelevant.

But if you keep those caveats in mind, algorithmic analysis is a useful tool. At least for
large problems, the “better” algorithms is usually better, and sometimes it is much better.
The difference between two algorithms with the same order of growth is usually a constant
factor, but the difference between a good algorithm and a bad algorithm is unbounded!
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3.2 Analysis of basic Python operations

Most arithmetic operations are constant time; multiplication usually takes longer than ad-
dition and subtraction, and division takes even longer, but these run times don’t depend
on the magnitude of the operands. Very large integers are an exception; in that case the run
time increases with the number of digits.

Indexing operations—reading or writing elements in a sequence or dictionary—are also
constant time, regardless of the size of the data structure.

A for loop that traverses a sequence or dictionary is usually linear, as long as all of the
operations in the body of the loop are constant time. For example, adding up the elements
of a list is linear:

total = 0

for x in t:

total += x

The built-in function sum is also linear because it does the same thing, but it tends to be
faster because it is a more efficient implementation; in the language of algorithmic analysis,
it has a smaller leading coefficient.

If you use the same loop to “add” a list of strings, the run time is quadratic because string
concatenation is linear.

The string method join is usually faster because it is linear in the total length of the strings.

As a rule of thumb, if the body of a loop is in O(na) then the whole loop is in O(na+1). The
exception is if you can show that the loop exits after a constant number of iterations. If a
loop runs k times regardless of n, then the loop is in O(na), even for large k.

Multiplying by k doesn’t change the order of growth, but neither does dividing. So if the
body of a loop is in O(na) and it runs n/k times, the loop is in O(na+1), even for large k.

Most string and tuple operations are linear, except indexing and len, which are constant
time. The built-in functions min and max are linear. The run-time of a slice operation is
proportional to the length of the output, but independent of the size of the input.

All string methods are linear, but if the lengths of the strings are bounded by a constant—
for example, operations on single characters—they are considered constant time.

Most list methods are linear, but there are some exceptions:

• Adding an element to the end of a list is constant time on average; when it runs
out of room it occasionally gets copied to a bigger location, but the total time for n
operations is O(n), so we say that the “amortized” time for one operation is O(1).

• Removing an element from the end of a list is constant time.

• Sorting is O(n log n).

Most dictionary operations and methods are constant time, but there are some exceptions:
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• The run time of copy is proportional to the number of elements, but not the size of
the elements (it copies references, not the elements themselves).

• The run time of update is proportional to the size of the dictionary passed as a pa-
rameter, not the dictionary being updated.

• keys, values and items are linear because they return new lists; iterkeys,
itervalues and iteritems are constant time because they return iterators. But if
you loop through the iterators, the loop will be linear. Using the “iter” functions
saves some overhead, but it doesn’t change the order of growth unless the number of
items you access is bounded.

The performance of dictionaries is one of the minor miracles of computer science. We will
see how they work in Section 3.4.
Exercise 3.2. Read the Wikipedia page on sorting algorithms at http: // en. wikipedia. org/
wiki/ Sorting_ algorithm and answer the following questions:

1. What is a “comparison sort?” What is the best worst-case order of growth for a comparison
sort? What is the best worst-case order of growth for any sort algorithm?

2. What is the order of growth of bubble sort, and why does Barack Obama think it is “the wrong
way to go?”

3. What is the order of growth of radix sort? What preconditions do we need to use it?

4. What is a stable sort and why might it matter in practice?

5. What is the worst sorting algorithm (that has a name)?

6. What sort algorithm does the C library use? What sort algorithm does Python use? Are these
algorithms stable? You might have to Google around to find these answers.

7. Many of the non-comparison sorts are linear, so why does does Python use an O(n log n)
comparison sort?

3.3 Analysis of search algorithms

A search is an algorithm that takes a collection and a target item and determines whether
the target is in the collection, often returning the index of the target.

The simplest search algorithm is a “linear search,” which traverses the items of the collec-
tion in order, stopping if it finds the target. In the worst case it has to traverse the entire
collection, so the run time is linear.

The in operator for sequences uses a linear search; so do string methods like find and
count.

If the elements of the sequence are in order, you can use a bisection search, which is
O(log n). Bisection search is similar to the algorithm you probably use to look a word
up in a dictionary (a real dictionary, not the data structure). Instead of starting at the be-
ginning and checking each item in order, you start with the item in the middle and check
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whether the word you are looking for comes before or after. If it comes before, then you
search the first half of the sequence. Otherwise you search the second half. Either way, you
cut the number of remaining items in half.

If the sequence has 1,000,000 items, it will take about 20 steps to find the word or conclude
that it’s not there. So that’s about 50,000 times faster than a linear search.
Exercise 3.3. Write a function called bisection that takes a sorted list and a target value and
returns the index of the value in the list, if it’s there, or None if it’s not.

Or you could read the documentation of the bisect module and use that!

Bisection search can be much faster than linear search, but it requires the sequence to be in
order, which might require extra work.

There is another data structure, called a hashtable that is even faster—it can do a search
in constant time—and it doesn’t require the items to be sorted. Python dictionaries are
implemented using hashtables, which is why most dictionary operations, including the in

operator, are constant time.

3.4 Hashtables
To explain how hashtables work and why their performance is so good, I start with a simple
implementation of a map and gradually improve it until it’s a hashtable.

I use Python to demonstrate these implementations, but in real life you wouldn’t write
code like this in Python; you would just use a dictionary! So for the rest of this chapter, you
have to imagine that dictionaries don’t exist and you want to implement a data structure
that maps from keys to values. The operations you have to implement are:

add(k, v): Add a new item that maps from key k to value v. With a Python dictionary, d,
this operation is written d[k] = v.

get(target): Look up and return the value that corresponds to key target. With a Python
dictionary, d, this operation is written d[target] or d.get(target).

For now, I assume that each key only appears once. The simplest implementation of this
interface uses a list of tuples, where each tuple is a key-value pair.
class LinearMap(object):

def __init__(self):

self.items = []

def add(self, k, v):

self.items.append((k, v))

def get(self, k):

for key, val in self.items:

if key == k:

return val

raise KeyError
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add appends a key-value tuple to the list of items, which takes constant time.

get uses a for loop to search the list: if it finds the target key it returns the corresponding
value; otherwise it raises a KeyError. So get is linear.

An alternative is to keep the list sorted by key. Then get could use a bisection search,
which is O(log n). But inserting a new item in the middle of a list is linear, so this might
not be the best option. There are other data structures (see http://en.wikipedia.org/

wiki/Red-black_tree) that can implement add and get in log time, but that’s still not as
good as constant time, so let’s move on.

One way to improve LinearMap is to break the list of key-value pairs into smaller lists.
Here’s an implementation called BetterMap, which is a list of 100 LinearMaps. As we’ll
see in a second, the order of growth for get is still linear, but BetterMap is a step on the
path toward hashtables:

class BetterMap(object):

def __init__(self, n=100):

self.maps = []

for i in range(n):

self.maps.append(LinearMap())

def find_map(self, k):

index = hash(k) % len(self.maps)

return self.maps[index]

def add(self, k, v):

m = self.find_map(k)

m.add(k, v)

def get(self, k):

m = self.find_map(k)

return m.get(k)

__init__ makes a list of n LinearMaps.

find_map is used by add and get to figure out which map to put the new item in, or which
map to search.

find_map uses the built-in function hash, which takes almost any Python object and returns
an integer. A limitation of this implementation is that it only works with hashable keys.
Mutable types like lists and dictionaries are unhashable.

Hashable objects that are considered equal return the same hash value, but the converse is
not necessarily true: two different objects can return the same hash value.

find_map uses the modulus operator to wrap the hash values into the range from 0 to
len(self.maps), so the result is a legal index into the list. Of course, this means that many
different hash values will wrap onto the same index. But if the hash function spreads things
out pretty evenly (which is what hash functions are designed to do), then we expect n/100
items per LinearMap.
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Since the run time of LinearMap.get is proportional to the number of items, we expect
BetterMap to be about 100 times faster than LinearMap. The order of growth is still linear,
but the leading coefficient is smaller. That’s nice, but still not as good as a hashtable.

Here (finally) is the crucial idea that makes hashtables fast: if you can keep the maximum
length of the LinearMaps bounded, LinearMap.get is constant time. All you have to do is
keep track of the number of items and when the number of items per LinearMap exceeds
a threshold, resize the hashtable by adding more LinearMaps.

Here is an implementation of a hashtable:

class HashMap(object):

def __init__(self):

self.maps = BetterMap(2)

self.num = 0

def get(self, k):

return self.maps.get(k)

def add(self, k, v):

if self.num == len(self.maps.maps):

self.resize()

self.maps.add(k, v)

self.num += 1

def resize(self):

new_maps = BetterMap(self.num * 2)

for m in self.maps.maps:

for k, v in m.items:

new_maps.add(k, v)

self.maps = new_maps

Each HashMap contains a BetterMap; __init__ starts with just 2 LinearMaps and initializes
num, which keeps track of the number of items.

get just dispatches to BetterMap. The real work happens in add, which checks the number
of items and the size of the BetterMap: if they are equal, the average number of items per
LinearMap is 1, so it calls resize.

resize make a new BetterMap, twice as big as the previous one, and then “rehashes” the
items from the old map to the new.

Rehashing is necessary because changing the number of LinearMaps changes the denom-
inator of the modulus operator in find_map. That means that some objects that used to
wrap into the same LinearMap will get split up (which is what we wanted, right?).

Rehashing is linear, so resize is linear, which might seem bad, since I promised that add
would be constant time. But remember that we don’t have to resize every time, so add is
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Figure 3.1: The cost of a hashtable add.

usually constant time and only occasionally linear. The total amount of work to run add n
times is proportional to n, so the average time of each add is constant time!

To see how this works, think about starting with an empty HashTable and adding a se-
quence of items. We start with 2 LinearMaps, so the first 2 adds are fast (no resizing re-
quired). Let’s say that they take one unit of work each. The next add requires a resize, so
we have to rehash the first two items (let’s call that 2 more units of work) and then add the
third item (one more unit). Adding the next item costs 1 unit, so the total so far is 6 units
of work for 4 items.

The next add costs 5 units, but the next three are only one unit each, so the total is 14 units
for the first 8 adds.

The next add costs 9 units, but then we can add 7 more before the next resize, so the total is
30 units for the first 16 adds.

After 32 adds, the total cost is 62 units, and I hope you are starting to see a pattern. After n
adds, where n is a power of two, the total cost is 2n− 2 units, so the average work per add
is a little less than 2 units. When n is a power of two, that’s the best case; for other values of
n the average work is a little higher, but that’s not important. The important thing is that it
is O(1).

Figure 3.1 shows how this works graphically. Each block represents a unit of work. The
columns show the total work for each add in order from left to right: the first two adds cost
1 units, the third costs 3 units, etc.

The extra work of rehashing appears as a sequence of increasingly tall towers with increas-
ing space between them. Now if you knock over the towers, amortizing the cost of resizing
over all adds, you can see graphically that the total cost after n adds is 2n− 2.

An important feature of this algorithm is that when we resize the HashTable it grows
geometrically; that is, we multiply the size by a constant. If you increase the size
arithmetically—adding a fixed number each time—the average time per add is linear.

You can download my implementation of HashMap from thinkcomplex.com/Map.py, but
remember that there is no reason to use it; if you want a map, just use a Python dictionary.
Exercise 3.4. My implementation of HashMap accesses the attributes of BetterMap directly, which
shows poor object-oriented design.

1. The special method __len__ is invoked by the built-in function len. Write a __len__method
for BetterMap and use it in add.
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2. Use a generator to write BetterMap.iteritems, and use it in resize.
Exercise 3.5. A drawbacks of hashtables is that the elements have to be hashable, which usually
means they have to be immutable. That’s why, in Python, you can use tuples but not lists as keys in
a dictionary. An alternative is to use a tree-based map.

Write an implementation of the map interface called TreeMap that uses a red-black tree to perform
add and get in log time.

3.5 Summing lists

Suppose you have a bunch of lists and you want to join them up into a single list. There
are three ways you might do that in Python:

• You could use the += operator:

total = []

for x in t:

total += x

• Or the extend method:

total = []

for x in t:

total.extend(x)

• Or the built-in function sum:

total = sum(t, [])

The second argument to sum is the initial value for the total.

Without knowing how += and extend and sum are implemented, it is hard to analyze
their performance. For example, if total += x creates a new list every time, the loop is
quadratic; but if it modifies total, it’s linear.

To find out, we could read the source code, but as an exercise, let’s see if we can figure it
out by measuring run times.

A simple way to measure the run time of a program is to use the function times in the os

module, which returns a tuple of floats indicating the time your process has used (see the
documentation for details). I use a function, etime, which returns the sum of “user time”
and “system time” which is usually what we care about for performance measurement:

import os

def etime():

"""See how much user and system time this process has used

so far and return the sum."""

user, sys, chuser, chsys, real = os.times()

return user+sys
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To measure the elapsed time of a function you can call etime twice and compute the dif-
ference:

start = etime()

# put the code you want to measure here

end = etime()

elapsed = end - start

Alternatively, if you use IPython, you can use the timeit command. See ipython.scipy.

org.

If an algorithm is quadratic, we expect the run time, t as a function of input size, n, to look
like this:

t = an2 + bn + c

Where a, b and c are unknown coefficients. If you take the log of both sides you get:

log t ∼ log a + 2 log n

For large values of n, the non-leading terms are insignificant and this approximation is
pretty good. So if we plot t versus n on a log-log scale, we expect a straight line with slope
2.

Similarly if the algorithm is linear, we expect a line with slope 1.

I wrote three functions that concatenate lists: sum_plus uses +=; sum_extend uses
list.extend; and sum_sum uses sum. I timed them for a range of n and plotted the results
on a log-log scale. Figures 3.2 and 3.3 show the results.

In Figure 3.2 I fit a line with slope 1 to the curves. The data fit this line well, so we conclude
that these implementations are linear. The implementation for += is faster by a constant
factor because it takes some time to look up the extend method each time through the
loop.

In Figure 3.3 the data fit a line with slope 2, so the implementation of sum is quadratic.

3.6 pyplot

To make the figures in this section I used pyplot, which is part of matplotlib. If
matplotlib is not part of your Python installation, you might have to install it, or you
can use another library to make plots.

Here’s an example that makes a simple plot:

import matplotlib.pyplot as pyplot
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pyplot.plot(xs, ys)

scale = 'log'

pyplot.xscale(scale)

pyplot.yscale(scale)

pyplot.title('')

pyplot.xlabel('n')

pyplot.ylabel('run time (s)')

pyplot.show()

The import statement makes matplotlib.pyplot accessible with the shorter name pyplot.

plot takes a list of x-values and a list of y-values and plots them. The lists have to have the
same length. xscale and yscale make the axes either linear or logarithmic.

title, xlabel and ylabel are self-explanatory. Finally, show displays the plot on the
screen. You could also use savefig to save the plot in a file.

Documentation of pyplot is at http://matplotlib.sourceforge.net/.
Exercise 3.6. Test the performance of LinearMap, BetterMap and HashMap; see if you can char-
acterize their order of growth.

You can download my map implementations from thinkcomplex. com/ Map. py , and the code I
used in this section from thinkcomplex. com/ listsum. py .

You will have to find a range of n that is big enough to show asymptotic behavior, but small enough
to run quickly.

3.7 List comprehensions

One of the most common programming patterns is to traverse a list while building a new
list.

Here is an example that computes the square of each element in a list and accumulates the
results:

res = []

for x in t:

res.append(x**2)

This pattern is so common that Python provides a more concise syntax for it, called a list
comprehension. In this context, the sense of “comprehend” is something like “contain”
rather than “understand.” See http://en.wikipedia.org/wiki/List_comprehension.

Here’s what it looks like:

res = [x**2 for x in t]

This expression yields the same result as the previous loop. List comprehensions tend to
be fast because the loop is executed in C rather than Python. The drawback is that they are
harder to debug.

List comprehensions can include an if clause that selects a subset of the items. The follow-
ing example makes a list of the positive elements in t:
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res = [x for x in t if x > 0]

The following is a common idiom for making a list of tuples, where each tuple is a value
and a key from a dictionary:

res = [(v, k) for k, v in d.iteritems()]

In this case it is safe to use iteritems, rather than items, because the loop does not modify
the dictionary; and it is likely to be faster because it doesn’t have to make a list, just an
iterator.

It is also possible to nest for loops inside a list comprehension. The following example
builds a list of Edges between each pair of vertices in vs:

edges = [Edge(v, w) for v in vs for w in vs if v is not w]

That’s pretty concise, but complicated comprehensions can be hard to read, so use them
sparingly.
Exercise 3.7. Review the methods your wrote in Graph.py and see if any can be rewritten using
list comprehensions.
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Small world graphs

4.1 Analysis of graph algorithms

The order of growth for a graph algorithm is usually expressed as a function of |V|, the
number of vertices, and |E|, the number of edges.

The order of growth for BFS is O(|V|+ |E|), which is a convenient way to say that the run
time grows in proportion to either |V| or |E|, whichever is “bigger.”

To see why, think about these four operations:

Adding a vertex to the queue: this happens once for each vertex, so the total cost is in
O(|V|).

Removing a vertex from the queue: this happens once for each vertex, so the total cost is
in O(|V|).

Marking a vertex “visited”: this happens once for each vertex, so the total cost is in O(|V|).

Checking whether a vertex is marked: this happens once each edge, so the total cost is in
O(|E|).

Adding them up, we get O(|V|+ |E|). If we know the relationship between |V| and |E|,
we can simplify this expression. For example, in a regular graph, the number of edges is
in O(|V|) so BFS is linear in |V|. In a complete graph, the number of edges is in O(|V|2) so
BFS is quadratic in |V|.

Of course, this analysis is based on the assumption that all four operations—adding and
removing vertices, marking and checking marks—are constant time.

Marking vertices is easy. You can add an attribute to the Vertex objects or put the marked
ones in a set and use the in operator.

But making a first-in-first-out (FIFO) queue that can add and remove vertices in constant
time turns out to be non-trivial.
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4.2 FIFO implementation

A FIFO is a data structure that provides the following operations:

append: Add a new item to the end of the queue.

pop: Remove and return the item at the front of the queue.

There are several good implementations of this data structure. One is the doubly-linked
list, which you can read about at http://en.wikipedia.org/wiki/Doubly-linked_list.
Another is a circular buffer, which you can read about at http://en.wikipedia.org/wiki/
Circular_buffer.
Exercise 4.1. Write an implementation of a FIFO using either a doubly-linked list or a circular
buffer.

Yet another possibility is to use a Python dictionary and two indices: nextin keeps track of
the back of the queue; nextout keeps track of the front. The dictionary maps from integer
indices to values.

Here is an implementation based on Raymond Hettinger’s recipe at http://code.

activestate.com/recipes/68436/.

class DictFifo(object):

def __init__(self):

self.nextin = 0

self.nextout = 0

self.data = {}

def append(self, value):

self.data[self.nextin] = value

self.nextin += 1

def pop(self, n=-1):

value = self.data.pop(self.nextout)

self.nextout += 1

return value

append stores the new item and increments nextin; both operations are constant time.

pop removes the last item and increments nextout. Again, both operations are constant
time.

As yet another alternative, the Python collections module provides an object called a
deque, which stands for “double-ended queue”. It is supposed to be pronounced “deck,”
but many people say “deek.” A Python deque can be adapted to implement a FIFO.

You can read about deques at http://en.wikipedia.org/wiki/Deque and get the details
of the Python implementation at docs.python.org/lib/deque-objects.html.
Exercise 4.2. The following implementation of a BFS contains two performance errors. What are
they? What is the actual order of growth for this algorithm?
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def bfs(top_node, visit):

"""Breadth-first search on a graph, starting at top_node."""

visited = set()

queue = [top_node]

while len(queue):

curr_node = queue.pop(0) # Dequeue

visit(curr_node) # Visit the node

visited.add(curr_node)

# Enqueue non-visited and non-enqueued children

queue.extend(c for c in curr_node.children

if c not in visited and c not in queue)

Test this code with a range of graph sizes and check your analysis. Then use a FIFO implementation
to fix the errors and confirm that your algorithm is linear.

4.3 Stanley Milgram
Stanley Milgram was an American social psychologist who conducted two of the most
famous experiments in social science, the Milgram experiment, which studied people’s
obedience to authority (http://en.wikipedia.org/wiki/Milgram_experiment) and the
Small World Experiment, which studied the structure of social networks (http://en.
wikipedia.org/wiki/Small_world_phenomenon).

In the Small World Experiment, Milgram sent a package to several randomly-chosen peo-
ple in Wichita, Kansas, with instructions asking them to forward an enclosed letter to a
target person, identified by name and occupation, in Sharon, Massachusetts (which is the
town near Boston where I grew up). The subjects were told that they could mail the letter
directly to the target person only if they knew him personally; otherwise they were in-
structed to send it, and the same instructions, to a relative or friend they thought would be
more likely to know the target person.

Many of the letters were never delivered, but for the ones that were the average path
length—the number of times the letters were forwarded—was about six. This result was
taken to confirm previous observations (and speculations) that the typical distance be-
tween any two people in a social network is about “six degrees of separation.”

This conclusion is surprising because most people expect social networks to be localized—
people tend to live near their friends—and in a graph with local connections, path lengths
tend to increase in proportion to geographical distance. For example, most of my friends
live nearby, so I would guess that the average distance between nodes in a social network
is about 50 miles. Wichita is about 1600 miles from Boston, so if Milgram’s letters traversed
typical links in the social network, they should have taken 32 hops, not six.

4.4 Watts and Strogatz
In 1998 Duncan Watts and Steven Strogatz published a paper in Nature, “Collective dy-
namics of ’small-world’ networks,” that proposed an explanation for the small world phe-
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nomenon. You can download it from http://www.nature.com/nature/journal/v393/

n6684/abs/393440a0.html.

Watts and Strogatz started with two kinds of graph that were well understood: random
graphs and regular graphs. They looked at two properties of these graphs, clustering and
path length.

Clustering is a measure of the “cliquishness” of the graph. In a graph, a clique is a subset
of nodes that are all connected to each other; in a social network, a clique is a set of
friends who all know each other. Watts and Strogatz defined a clustering coefficient
that quantifies the likelihood that two nodes that are connected to the same node are
also connected to each other.

Path length is a measure of the average distance between two nodes, which corresponds
to the degrees of separation in a social network.

Their initial result was what you might expect: regular graphs have high clustering and
high path lengths; random graphs with the same size tend to have low clustering and
low path lengths. So neither of these is a good model of social networks, which seem to
combine high clustering with short path lengths.

Their goal was to create a generative model of a social network. A generative model tries
to explain a phenomenon by modeling the process that builds or leads to the phenomenon.
In this case Watts and Strogatz proposed a process for building small-world graphs:

1. Start with a regular graph with n nodes and degree k. Watts and Strogatz start with
a ring lattice, which is a kind of regular graph. You could replicate their experiment
or try instead a graph that is regular but not a ring lattice.

2. Choose a subset of the edges in the graph and “rewire” them by replacing them with
random edges. Again, you could replicate the procedure described in the paper or
experiment with alternatives.

The proportion of edges that are rewired is a parameter, p, that controls how random the
graph is. With p = 0, the graph is regular; with p = 1 it is random.

Watts and Strogatz found that small values of p yield graphs with high clustering, like a
regular graph, and low path lengths, like a random graph.
Exercise 4.3. Read the Watts and Strogatz paper and answer the following questions:

1. What process do Watts and Strogatz use to rewire their graphs?

2. What is the definition of the clustering coefficient C(p)?

3. What is the definition of the average path length L(p)?

4. What real-world graphs did Watts and Strogatz look at? What evidence do they present that
these graphs have the same structure as the graphs generated by their model?

Exercise 4.4. Create a file named SmallWorldGraph.py and define a class named
SmallWorldGraph that inherits from RandomGraph.

If you did Exercise 2.4 you can use your own RandomGraph.py; otherwise you can download mine
from thinkcomplex. com/ RandomGraph. py .
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1. Write a method called rewire that takes a probability p as a parameter and, starting with a
regular graph, rewires the graph using Watts and Strogatz’s algorithm.

2. Write a method called clustering_coefficient that computes and returns the clustering
coefficient as defined in the paper.

3. Make a graph that replicates the line marked C(p)/C(0) in Figure 2 of the paper. In other
words, confirm that the clustering coefficient drops off slowly for small values of p.

Before we can replicate the other line, we have to learn about shortest path algorithms.

4.5 Dijkstra

Edsger W. Dijkstra was a Dutch computer scientist who invented an efficient shortest-path
algorithm (see http://en.wikipedia.org/wiki/Dijkstra's_algorithm). He also in-
vented the semaphore, which is a data structure used to coordinate programs that commu-
nicate with each other (see http://en.wikipedia.org/wiki/Semaphore_(programming)

and Downey, The Little Book of Semaphores).

Dijkstra is famous (and notorious) as the author of a series of essays on computer science.
Some, like “A Case against the GO TO Statement,” have had a profound effect on pro-
gramming practice. Others, like “On the Cruelty of Really Teaching Computing Science,”
are entertaining in their cantankerousness, but less effective.

Dijkstra’s algorithm solves the “single source shortest path problem,” which means that it
finds the minimum distance from a given “source” node to every other node in the graph
(or at least every connected node).

We start with a simplified version of the algorithm that considers all edges the same length.
The more general version works with any non-negative edge lengths.

The simplified version is similar to the breadth-first search in Section 2.4 except that instead
of marking visited nodes, we label them with their distance from the source. Initially all
nodes are labeled with an infinite distance. Like a breadth-first search, Dijkstra’s algorithm
uses a queue of discovered unvisited nodes.

1. Give the source node distance 0 and add it to the queue. Give the other nodes infinite
distance.

2. Remove a vertex from the queue and assign its distance to d. Find the vertices it is
connected to. For each connected vertex with infinite distance, replace the distance
with d + 1 and add it to the queue.

3. If the queue is not empty, go back to Step 2.

The first time you execute Step 2, the only node in the queue has distance 0. The second
time, the queue contains all nodes with distance 1. Once those nodes are processed, the
queue contains all nodes with distance 2, and so on.

So when a node is discovered for the first time, it is labeled with the distance d + 1, which
is the shortest path to that node. It is not possible that you will discover a shorter path
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later, because if there were a shorter path, you would have discovered it sooner. That is
not a proof of the correctness of the algorithm, but it sketches the structure of the proof by
contradiction.

In the more general case, where the edges have different lengths, it is possible to discover
a shorter path after you have discovered a longer path, so a little more work is needed.
Exercise 4.5. Write an implementation of Dijkstra’s algorithm and use it to compute the average
path length of a SmallWorldGraph.

Make a graph that replicates the line marked L(p)/L(0) in Figure 2 of the Watts and Strogatz
paper. Confirm that the average path length drops off quickly for small values of p. What is the
range of values for p that yield graphs with high clustering and low path lengths?
Exercise 4.6. A natural question about the Watts and Strogatz paper is whether the small world
phenomenon is specific to their generative model or whether other similar models yield the same
qualitative result (high clustering and low path lengths).

To answer this question, choose a variation of the Watts and Strogatz model and replicate their
Figure 2. There are two kinds of variation you might consider:

• Instead of starting with a regular graph, start with another graph with high clustering. One
option is a locally-connected graph where vertices are placed at random locations in the plane
and each vertex is connected to its nearest k neighbors.

• Experiment with different kinds of rewiring.

If a range of similar models yield similar behavior, we say that the results of the paper are robust.
Exercise 4.7. To compute the average path length in a SmallWorldGraph, you probably ran Di-
jkstra’s single-source shortest path algorithm for each node in the graph. In effect, you solved the
“all-pairs shortest path” problem, which finds the shortest path between all pairs of nodes.

1. Find an algorithm for the all-pairs shortest path problem and implement it. Compare the run
time with your “all-source Dijkstra” algorithm.

2. Which algorithm gives better order-of-growth run time as a function of the number of ver-
tices and edges? Why do you think Dijkstra’s algorithm does better than the order-of-growth
analysis suggests?

4.6 What kind of explanation is that?

If you ask me why planetary orbits are elliptical, I might start by modeling a planet
and a star as point masses; I would look up the law of universal gravitation at http://
en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation and use it to write
a differential equation for the motion of the planet. Then I would either derive the orbit
equation or, more likely, look it up at http://en.wikipedia.org/wiki/Orbit_equation.
With a little algebra, I could derive the conditions that yield an elliptical orbit. Then I
would argue that the objects we consider planets satisfy these conditions.

People, or at least scientists, are generally satisfied with this kind of explanation. One of
the reasons for its appeal is that the assumptions and approximations in the model seem
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reasonable. Planets and stars are not really point masses, but the distances between them
are so big that their actual sizes are negligible. Planets in the same solar system can affect
each others’ orbits, but the effect is usually small. And we ignore relativistic effects, again
on the assumption that they are small.

This explanation is also appealing because it is equation-based. We can express the orbit
equation in a closed form, which means that we can compute orbits efficiently. It also
means that we can derive general expressions for the orbital velocity, orbital period, and
other quantities.

Finally, I think this kind of explanation is appealing because it has the form of a mathemat-
ical proof. It starts from a set of axioms and derives the result by logic and analysis. But it
is important to remember that the proof pertains to the model and not the real world. That
is, we can prove that an idealized model of a planet yields an elliptic orbit, but we can’t
prove that the model pertains to actual planets (in fact, it does not).

By comparison, Watts and Strogatz’s explanation of the small world phenomenon may
seem less satisfying. First, the model is more abstract, which is to say less realistic. Second,
the results are generated by simulation, not by mathematical analysis. Finally, the results
seem less like a proof and more like an example.

Many of the models in this book are like the Watts and Strogatz model: abstract,
simulation-based and (at least superficially) less formal than conventional mathematical
models. One of the goals of this book it to consider the questions these models raise:

• What kind of work can these models do: are they predictive, or explanatory, or both?

• Are the explanations these models offer less satisfying than explanations based on
more traditional models? Why?

• How should we characterize the differences between these and more conventional
models? Are they different in kind or only in degree?

Over the course of the book I will offer my answers to these questions, but they are tentative
and sometimes speculative. I encourage you to consider them skeptically and reach your
own conclusions.
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Chapter 5

Scale-free networks

5.1 Zipf’s Law

Zipf’s law describes a relationship between the frequencies and ranks of words in natural
languages; see http://en.wikipedia.org/wiki/Zipf's_law. The “frequency” of a word
is the number of times it appears in a body of work. The “rank” of a word is its position in
a list of words sorted by frequency: the most common word has rank 1, the second most
common has rank 2, etc.

Specifically, Zipf’s Law predicts that the frequency, f , of the word with rank r is:

f = cr−s

where s and c are parameters that depend on the language and the text.

If you take the logarithm of both sides of this equation, you get:

log f = log c− s log r

So if you plot log f versus log r, you should get a straight line with slope −s and intercept
log c.
Exercise 5.1. Write a program that reads a text from a file, counts word frequencies, and prints
one line for each word, in descending order of frequency. You can test it by downloading an out-of-
copyright book in plain text format from gutenberg.net. You might want to remove punctuation
from the words.

If you need some help getting started, you can download thinkcomplex. com/ Pmf. py , which
provides an object named Hist that maps from value to frequencies.

Plot the results and check whether they form a straight line. For plotting suggestions, see Sec-
tion 3.6. Can you estimate the value of s?

You can download my solution from thinkcomplex. com/ Zipf. py
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5.2 Cumulative distributions

A distribution is a statistical description of a set of values. For example, if you collect
the population of every city and town in the U.S., you would have a set of about 14,000
integers.

The simplest description of this set is a list of numbers, which would be complete but not
very informative. A more concise description is a statistical summary like the mean and
variation, but that is not a complete description because there are many sets of values with
the same summary statistics.

One alternative is a histogram, which divides the range of possible values into “bins” and
counts the number of values that fall in each bin. Histograms are common, so they are easy
to understand, but it is tricky to get the bin size right. If the bins are too small, the number
of values in each bin is also small, so the histogram doesn’t give much insight. If the bins
are too large, they lump together a wide range of values, which obscures details that might
be important.

A better alternative is a cumulative distribution function (CDF), which maps from a value,
x, to the fraction of values less than or equal to x. If you choose a value at random, CDF(x)
is the probability that the value you get is less than or equal to x.

For a list of n values, the simplest way to compute CDF is to sort the values. Then the CDF
of the ith value (starting from 1) is i/n.

I have written a class called Cdf that provides functions for creating and manipulating
CDFs. You can download it from thinkcomplex.com/Cdf.py.

As an example, we’ll compute the CDF for the values {1,2,2,4,5}:

import Cdf

cdf = Cdf.MakeCdfFromList([1,2,2,4,5])

MakeCdfFromList can take any sequence or iterator. Once you have the Cdf, you can find
the probability, CDF(x), for a given value:

prob = cdf.Prob(2)

The result is 0.6, because 3/5 of the values are less than or equal to 2. You can also compute
the value for a given probability:

value = cdf.Value(0.5)

The value with probability 0.5 is the median, which in this example is 2.

To plot the Cdf, you can use Render, which returns a list of value-probability pairs.

xs, ps = cdf.Render()

for x, p in zip(xs, ps):

print x, p

The result is:

1 0.0

1 0.2

2 0.2

2 0.6
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Figure 5.1: CDF of the values {1,2,2,4,5}.
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Each value appears twice. That way when we plot the CDF, we get a stair-step pattern.

import matplotlib.pyplot as pyplot

xs, ps = cdf.Render()

pyplot.plot(xs, ps, linewidth=3)

pyplot.axis([0.9, 5.1, 0, 1])

pyplot.title('CDF')

pyplot.xlabel('value, x')

pyplot.ylabel('probability, CDF(x)')

pyplot.show()

Figure 5.1 shows the cumulative distribution function (CDF), for the values (1, 2, 2, 4, 5).

I drew vertical lines at each of the values, which is not mathematically correct. To be more
rigorous, I should draw a discontinuous function.
Exercise 5.2. Read the code in Cdf.py. What is the order of growth for MakeCdfFromList and
the methods Prob and Value?

5.3 Continuous distributions

The distributions we have seen so far are sometimes called empirical distributions because
they are based on a dataset that comes from some kind of empirical observation.

An alternative is a continuous distribution, which is characterized by a CDF that is a
continuous function. Some of these distributions, like the Gaussian or normal distribution,
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are well known, at least to people who have studied statistics. Many real world phenomena
can be approximated by continuous distributions, which is why they are useful.

For example, if you observe a mass of radioactive material with an instrument that can
detect decay events, the distribution of times between events will most likely fit an expo-
nential distribution. The same is true for any series where an event is equally likely at any
time.

The CDF of the exponential distribution is:

CDF(x) = 1− e−λx

The parameter, λ, determines the mean and variance of the distribution. This equation can
be used to derive a simple visual test for whether a dataset can be well approximated by
an exponential distribution. All you have to do is plot the complementary distribution on
a log-y scale.

The complementary distribution (CCDF) is just 1−CDF(x); if you plot the complementary
distribution of a dataset that you think is exponential, you expect to see a function like:

y = 1− CDF(x) ∼ e−λx

If you take the log of both sides of this equation, you get:

log y ∼ −λx

So on a log-y scale the CCDF should look like a straight line with slope −λ.
Exercise 5.3. Write a function called plot_ccdf that takes a list of values and the corresponding
list of probabilities and plots the CCDF on a log-y scale.

To test your function, use expovariate from the random module to generate 100 values from an
exponential distribution. Plot the CCDF on a log-y scale and see if it falls on a straight line.

5.4 Pareto distributions

The Pareto distribution is named after the economist Vilfredo Pareto, who used it
to describe the distribution of wealth; see http://en.wikipedia.org/wiki/Pareto_

distribution. Since then, people have used it to describe phenomena in the natural and
social sciences including sizes of cities and towns, sand particles and meteorites, forest fires
and earthquakes.

The Pareto distribution is characterized by a CDF with the following form:

CDF(x) = 1−
(

x
xm

)−α



5.4. Pareto distributions 45

The parameters xm and α determine the location and shape of the distribution. xm is the
minimum possible quantity.

Values from a Pareto distribution often have these properties:

Long tail: Pareto distributions contain many small values and a few very large ones.

80/20 rule: The large values in a Pareto distribution are so large that they make up a dis-
proportionate share of the total. In the context of wealth, the 80/20 rule says that 20%
of the people own 80% of the wealth.

Scale free: Short-tailed distributions are centered around a typical size, which is called
a “scale.” For example, the great majority of adult humans are between 100 and
200 cm in height, so we could say that the scale of human height is a few hundred
centimeters. But for long-tailed distributions, there is no similar range (bounded
by a factor of two) that contains the bulk of the distribution. So we say that these
distributions are “scale-free.”

To get a sense of the difference between the Pareto and Gaussian distributions, imagine
what the world would be like if the distribution of human height were Pareto.

In Pareto World, the shortest person is 100 cm, and the median is 150 cm, so that part of
the distribution is not very different from ours.

But if you generate 6 billion values from this distribution distribution, the tallest person
might be 100 km—that’s what it means to be scale-free!

There is a simple visual test that indicates whether an empirical distribution is well-
characterized by a Pareto distribution: on a log-log scale, the CCDF looks like a straight
line. The derivation is similar to what we saw in the previous section.

The equation for the CCDF is:

y = 1− CDF(x) ∼
(

x
xm

)−α

Taking the log of both sides yields:

log y ∼ −α(log x− log xm)

So if you plot log y versus log x, it should look like a straight line with slope −α and inter-
cept α log xm.
Exercise 5.4. Write a version of plot_ccdf that plots the complementary CCDF on a log-log scale.

To test your function, use paretovariate from the random module to generate 100 values from
a Pareto distribution. Plot the CCDF on a log-y scale and see if it falls on a straight line. What
happens to the curve as you increase the number of values?
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Exercise 5.5. The distribution of populations for cities and towns has been proposed as an example
of a real-world phenomenon that can be described with a Pareto distribution.

The U.S. Census Bureau publishes data on the population of every incorporated city and town in the
United States. I wrote a small program that downloads this data and converts it into a convenient
form. You can download it from thinkcomplex. com/ populations. py .

Read over the program to make sure you know what it does and then write a program that computes
and plots the distribution of populations for the 14593 cities and towns in the dataset.

Plot the CDF on linear and log-x scales so you can get a sense of the shape of the distribution. Then
plot the CCDF on a log-log scale to see if it has the characteristic shape of a Pareto distribution.

What conclusion do you draw about the distribution of sizes for cities and towns?

5.5 Barabási and Albert
In 1999 Barabási and Albert published a paper in Science, “Emergence of Scaling in Random
Networks,” that characterizes the structure (also called “topology”) of several real-world
networks, including graphs that represent the interconnectivity of movie actors, world-
wide web (WWW) pages, and elements in the electrical power grid in the western United
States. You can download the paper from http://www.sciencemag.org/content/286/

5439/509.

They measure the degree (number of connections) of each node and compute P(k), the
probability that a vertex has degree k; then they plot P(k) versus k on a log-log scale. The
tail of the plot fits a straight line, so they conclude that it obeys a power law; that is, as k
gets large, P(k) is asymptotic to k−γ, where γ is a parameter that determines the rate of
decay.

They also propose a model that generates random graphs with the same property. The
essential features of the model, which distinguish it from the Erdős-Rényi model and the
Watts-Strogatz model, are:

Growth: Instead of starting with a fixed number of vertices, Barabási and Albert start with
a small graph and add vertices gradually.

Preferential attachment: When a new edge is created, it is more likely to connect to a
vertex that already has a large number of edges. This “rich get richer” effect is char-
acteristic of the growth patterns of some real-world networks.

Finally, they show that graphs generated by this model have a distribution of degrees
that obeys a power law. Graphs that have this property are sometimes called scale-free
networks; see http://en.wikipedia.org/wiki/Scale-free_network. That name can be
confusing because it is the distribution of degrees that is scale-free, not the network.

In order to maximize confusion, distributions that obey the power law are sometimes called
scaling distributions because they are invariant under a change of scale. That means that
if you change the units the quantities are expressed in, the slope parameter, γ, doesn’t
change. You can read http://en.wikipedia.org/wiki/Power_law for the details, but it is
not important for what we are doing here.
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Exercise 5.6. This exercise asks you to make connections between the Watts-Strogatz (WS) and
Barabási-Albert (BA) models:

1. Read Barabási and Albert’s paper and implement their algorithm for generating graphs. See
if you can replicate their Figure 2(A), which shows P(k) versus k for a graph with 150 000
vertices.

2. Use the WS model to generate the largest graph you can in a reasonable amount of time. Plot
P(k) versus k and see if you can characterize the tail behavior.

3. Use the BA model to generate a graph with about 1000 vertices and compute the characteristic
length and clustering coefficient as defined in the Watts and Strogatz paper. Do scale-free
networks have the characteristics of a small-world graph?

5.6 Zipf, Pareto and power laws

At this point we have seen three phenomena that yield a straight line on a log-log plot:

Zipf plot: Frequency as a function of rank.

Pareto CCDF: The complementary CDF of a Pareto distribution.

Power law plot: A histogram of frequencies.

The similarity in these plots is not a coincidence; these visual tests are closely related.

Starting with a power-law distribution, we have:

P(k) ∼ k−γ

If we choose a random node in a scale free network, P(k) is the probability that its degree
equals k.

The cumulative distribution function, CDF(k), is the probability that the degree is less than
or equal to k, so we can get that by summation:

CDF(k) =
k

∑
i=0

P(i)

For large values of k we can approximate the summation with an integral:

k

∑
i=0

i−γ ∼
∫ k

i=0
i−γ =

1
γ− 1

(1− k−γ+1)

To make this a proper CDF we could normalize it so that it goes to 1 as k goes to infinity,
but that’s not necessary, because all we need to know is:
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CDF(k) ∼ 1− k−γ+1

Which shows that the distribution of k is asymptotic to a Pareto distribution with α = γ− 1.

Similarly, if we start with a straight line on a Zipf plot, we have1:

f = cr−s

Where f is the frequency of the word with rank r. Inverting this relationship yields:

r = ( f /c)−1/s

Now subtracting 1 and dividing through by the number of different words, n, we get

r− 1
n

=
( f /c)−1/s

n
− 1

n

Which is only interesting because if r is the rank of a word, then (r − 1)/n is the fraction
of words with lower ranks, which is the fraction of words with higher frequency, which is
the CCDF of the distribution of frequencies:

CCDF(x) =
( f /c)−1/s

n
− 1

n

To characterize the asymptotic behavior for large n we can ignore c and 1/n, which yields:

CCDF(x) ∼ f−1/s

Which shows that if a set of words obeys Zipf’s law, the distribution of their frequencies is
asymptotic to a Pareto distribution with α = 1/s.

So the three visual tests are mathematically equivalent; a dataset that passes one test will
pass all three. But as a practical matter, the power law plot is noisier than the other two,
because it is the derivative of the CCDF.

The Zipf and CCDF plots are more robust, but Zipf’s law is only applicable to discrete data
(like words), not continuous quantities. CCDF plots work with both.

For these reasons—robustness and generality—I recommend using CCDFs.
Exercise 5.7. The Stanford Large Network Dataset Collection is a repository of datasets from a
variety of networks, including social networks, communication and collaboration, Internet and road
networks. See http: // snap. stanford. edu/ data/ index. html .

Download one of these datasets and explore. Is there evidence of small-world behavior? Is the
network scale-free? What else can you discover?

1This derivation follows Adamic, “Zipf, power law and Pareto—a ranking tutorial,” available at www.hpl.hp.
com/research/idl/papers/ranking/ranking.html
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Figure 5.2: The logical structure of an explanatory model.

5.7 Explanatory models

We started the discussion of networks with Milgram’s Small World Experiment, which
shows that path lengths in social networks are surprisingly small; hence, “six degrees of
separation”.

When we see something surprising, it is natural to ask “Why?” but sometimes it’s not clear
what kind of answer we are looking for. One kind of answer is an explanatory model (see
Figure 5.2). The logical structure of an explanatory model is:

1. In a system, S, we see something observable, O, that warrants explanation.

2. We construct a model, M, that is analogous to the system; that is, there is a correspon-
dence between the elements of the model and the elements of the system.

3. By simulation or mathematical derivation, we show that the model exhibits a behav-
ior, B, that is analogous to O.

4. We conclude that S exhibits O because S is similar to M, M exhibits B, and B is similar
to O.

At its core, this is an argument by analogy, which says that if two things are similar in some
ways, they are likely to be similar in other ways.

Argument by analogy can be useful, and explanatory models can be satisfying, but they do
not constitute a proof in the mathematical sense of the word.

Remember that all models leave out, or “abstract away” details that we think are unim-
portant. For any system there are many possible models that include or ignore different
features. And there might be models that exhibit different behaviors, B, B’ and B”, that are
similar to O in different ways. In that case, which model explains O?

The small world phenomenon is an example: the Watts-Strogatz (WS) model and the
Barabási-Albert (BA) model both exhibit small world behavior, but they offer different ex-
planations:
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• The WS model suggests that social networks are “small” because they include both
strongly-connected clusters and “weak ties” that connect clusters (see http://en.

wikipedia.org/wiki/Mark_Granovetter).

• The BA model suggests that social networks are small because they include nodes
with high degree that act as hubs, and that hubs grow, over time, due to preferential
attachment.

As is often the case in young areas of science, the problem is not that we have no explana-
tions, but too many.
Exercise 5.8. Are these explanations compatible; that is, can they both be right? Which do you find
more satisfying as an explanation, and why?

Is there data you could collect, or experiments you could perform, that would provide evidence in
favor of one model over the other?

Choosing among competing models is the topic of Thomas Kuhn’s essay, “Objectivity, Value Judg-
ment, and Theory Choice.” Kuhn was a historian of science who wrote The Structure of Scientific
Revolutions in 1962, and spent the rest of his life explaining what he meant to say.

What criteria does Kuhn propose for choosing among competing models? Do these criteria influence
your opinion about the WS and BA models? Are there other criteria you think should be considered?
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Cellular Automata

A cellular automaton is a model of a world with very simple physics. “Cellular” means
that the space is divided into discrete chunks, called cells. An “automaton” is a machine
that performs computations—it could be a real machine, but more often the “machine” is
a mathematical abstraction or a computer simulation.

Automata are governed by rules that determine how the system evolves in time. Time is
divided into discrete steps, and the rules specify how to compute the state of the world
during the next time step based on the current state.

As a trivial example, consider a cellular automaton (CA) with a single cell. The state of the
cell is an integer represented with the variable xi, where the subscript i indicates that xi is
the state of the system during time step i. As an initial condition, x0 = 0.

Now all we need is a rule. Arbitrarily, I’ll pick xi = xi−1 + 1, which says that after each time
step, the state of the CA gets incremented by 1. So far, we have a simple CA that performs
a simple calculation: it counts.

But this CA is atypical; normally the number of possible states is finite. To bring it into
line, I’ll choose the smallest interesting number of states, 2, and another simple rule, xi =
(xi−1 + 1)%2, where % is the remainder (or modulus) operator.

This CA performs a simple calculation: it blinks. That is, the state of the cell switches
between 0 and 1 after every time step.

Most CAs are deterministic, which means that rules do not have any random elements;
given the same initial state, they always produce the same result. There are also nondeter-
ministic CAs, but I will not address them here.

6.1 Stephen Wolfram

The CA in the previous section was 0-dimensional and it wasn’t very interesting. But 1-
dimensional CAs turn out to be surprisingly interesting.
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Figure 6.1: Rule 50 after 10 time steps.

In the early 1980s Stephen Wolfram published a series of papers presenting a systematic
study of 1-dimensional CAs. He identified four general categories of behavior, each more
interesting than the last.

To say that a CA has dimensions is to say that the cells are arranged in a contiguous space
so that some of them are considered “neighbors.” In one dimension, there are three natural
configurations:

Finite sequence: A finite number of cells arranged in a row. All cells except the first and
last have two neighbors.

Ring: A finite number of cells arranged in a ring. All cells have two neighbors.

Infinite sequence: An infinite number of cells arranged in a row.

The rules that determine how the system evolves in time are based on the notion of a
“neighborhood,” which is the set of cells that determines the next state of a given cell. Wol-
fram’s experiments use a 3-cell neighborhood: the cell itself and its left and right neighbors.

In these experiments, the cells have two states, denoted 0 and 1, so the rules can be sum-
marized by a table that maps from the state of the neighborhood (a tuple of 3 states) to the
next state for the center cell. The following table shows an example:

prev 111 110 101 100 011 010 001 000
next 0 0 1 1 0 0 1 0

The row first shows the eight states a neighborhood can be in. The second row shows the
state of the center cell during the next time step. As a concise encoding of this table, Wol-
fram suggested reading the bottom row as a binary number. Because 00110010 in binary is
50 in decimal, Wolfram calls this CA “Rule 50.”

Figure 6.1 shows the effect of Rule 50 over 10 time steps. The first row shows the state of
the system during the first time step; it starts with one cell “on” and the rest “off”. The
second row shows the state of the system during the next time step, and so on.

The triangular shape in the figure is typical of these CAs; is it a consequence of the shape of
the neighborhood. In one time step, each cell influences the state of one neighbor in either
direction. During the next time step, that influence can propagate one more cell in each
direction. So each cell in the past has a “triangle of influence” that includes all of the cells
that can be affected by it.
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Figure 6.2: A list of lists (left) and a Numpy array (right).

6.2 Implementing CAs

To generate the previous figure, I wrote a Python program that implements and draws
CAs. You can download my code from thinkcomplex.com/CA.py. and thinkcomplex.

com/CADrawer.py.

To store the state of the CA, I use a NumPy array. An array is a multi-dimensional data
structure whose elements are all the same type. It is similar to a nested list, but usually
smaller and faster. Figure 6.2 shows why. The diagram on the left shows a list of lists of
integers; each dot represents a reference, which takes up 4–8 bytes. To access one of the
integers, you have to follow two references.

The diagram on the right shows an array of the same integers. Because the elements are all
the same size, they can be stored contiguously in memory. This arrangement saves space
because it doesn’t use references, and it saves time because the location of an element can
be computed directly from the indices; there is no need to follow a series of references.

Here is a CA object that uses a NumPy array:

import numpy

class CA(object):

def __init__(self, rule, n=100, ratio=2):

self.table = make_table(rule)

self.n = n

self.m = ratio*n + 1

self.array = numpy.zeros((n, self.m), dtype=numpy.int8)

self.next = 0

rule is an integer in the range 0-255, which represents the CA rule table using Wolfram’s
encoding. make_table converts the rule to a dictionary that maps from neighborhood
states to cell states. For example, in Rule 50 the table maps from (1, 1, 1) to 0.

n is the number of rows in the array, which is the number of time steps we will compute.
m is the number of columns, which is the number of cells. To get started, I’ll implement a
finite array of cells.
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zeros is provided by NumPy; it creates a new array with the given dimensions, n by m;
dtype stands for “data type,” and it specifies the type of the array elements. int8 is an
8-bit integer, so we are limited to 256 states, but that’s no problem: we only need two.

next is the index of the next time step.

There are two common starting conditions for CAs: a single cell, or a row of random cells.
start_single initializes the first row with a single cell and increments next:

def start_single(self):

"""Starts with one cell in the middle of the top row."""

self.array[0, self.m/2] = 1

self.next += 1

The array index is a tuple that species the row and column of the cell, in that order.

step computes the next state of the CA:

def step(self):

i = self.next

self.next += 1

a = self.array

t = self.table

for j in xrange(1,self.m-1):

a[i,j] = t[tuple(a[i-1, j-1:j+2])]

i is the time step and the index of the row we are about to compute. j loops through the
cells, skipping the first and last, which are always off.

Arrays support slice operations, so self.array[i-1, j-1:j+2] gets three elements from
row i-1. Then we look up the neighborhood tuple in the table, get the next state, and store
it in the array.

Array indexing is constant time, so step is linear in n. Filling in the whole array is O(nm).

You can read more about NumPy and arrays at scipy.org/Tentative_NumPy_Tutorial.

6.3 CADrawer

An abstract class is a class definition that specifies the interface for a set of methods without
providing an implementation. Child classes extend the abstract class and implement the
incomplete methods. See http://en.wikipedia.org/wiki/Abstract_type.

As an example, CADrawer defines an interface for drawing CAs; here is the definition:

class Drawer(object):

"""Drawer is an abstract class that should not be instantiated.

It defines the interface for a CA drawer; child classes of Drawer

should implement draw, show and save.

If draw_array is not overridden, the child class should provide

draw_cell.
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"""

def __init__(self):

msg = 'CADrawer is an abstract type and should not be instantiated.'

raise UnimplementedMethodException, msg

def draw(self, ca):

"""Draws a representation of cellular automaton (CA).

This function generally has no visible effect."""

raise UnimplementedMethodException

def draw_array(self, a):

"""Iterate through array (a) and draws any non-zero cells."""

for i in xrange(self.rows):

for j in xrange(self.cols):

if a[i,j]:

self.draw_cell(j, self.rows-i-1)

def draw_cell(self, ca):

"""Draws a single cell.

Not required for all implementations."""

raise UnimplementedMethodException

def show(self):

"""Displays the representation on the screen, if possible."""

raise UnimplementedMethodException

def save(self, filename):

"""Saves the representation of the CA in filename."""

raise UnimplementedMethodException

Abstract classes should not be instantiated; if you try, you get an
UnimplementedMethodException, which is a simple extension of Exception:

class UnimplementedMethodException(Exception):

"""Used to indicate that a child class has not implemented an

abstract method."""

To instantiate a CADrawer you have to define a child class that implements the methods,
then instantiate the child.

CADrawer.py provides three implementations, one that uses pyplot, one that uses the
Python Imaging Library (PIL), and one that generates Encapsulated Postscript (EPS).

Here is an example that uses PyplotDrawer to display a CA on the screen:

ca = CA(rule, n)

ca.start_single()

ca.loop(n-1)

drawer = CADrawer.PyplotDrawer()

drawer.draw(ca)

drawer.show()
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Figure 6.3: Rule 18 after 64 steps.

Exercise 6.1. Download thinkcomplex. com/ CA. py and thinkcomplex. com/ CADrawer. py
and confirm that they run on your system; you might have to install additional Python packages.

Create a new class called CircularCA that extends CA so that the cells are arranged in a ring. Hint:
you might find it useful to add a column of “ghost cells” to the array.

You can download my solution from thinkcomplex. com/ CircularCA. py

6.4 Classifying CAs

Wolfram proposes that the behavior of CAs can be grouped into four classes. Class 1 con-
tains the simplest (and least interesting) CAs, the ones that evolve from almost any starting
condition to the same uniform pattern. As a trivial example, Rule 0 always generates an
empty pattern after one time step.

Rule 50 is an example of Class 2. It generates a simple pattern with nested structure; that
is, the pattern contains many smaller versions of itself. Rule 18 makes the nested structure
even clearer; Figure 6.3 shows what it looks like after 64 steps.

This pattern resembles the Sierpiński triangle, which you can read about at http://en.
wikipedia.org/wiki/Sierpinski_triangle.

Some Class 2 CAs generate patterns that are intricate and pretty, but compared to Classes
3 and 4, they are relatively simple.

6.5 Randomness

Class 3 contains CAs that generate randomness. Rule 30 is an example; Figure 6.4 shows
what it looks like after 100 time steps.

Along the left side there is an apparent pattern, and on the right side there are triangles
in various sizes, but the center seems quite random. In fact, if you take the center column
and treat it as a sequence of bits, it is hard to distinguish from a truly random sequence. It
passes many of the statistical tests people use to test whether a sequence of bits is random.
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Figure 6.4: Rule 30 after 100 time steps.

Programs that produce random-seeming numbers are called pseudo-random number gen-
erators (PRNGs). They are not considered truly random because

• Many of them produce sequences with regularities that can be detected statistically.
For example, the original implementation of rand in the C library used a linear con-
gruential generator that yielded sequences with easily detectable serial correlations.

• Any PRNG that uses a finite amount of state (that is, storage) will eventually repeat
itself. One of the characteristics of a generator is the period of this repetition.

• The underlying process is fundamentally deterministic, unlike some physical pro-
cesses, like radioactive decay and thermal noise, that are considered to be fundamen-
tally random.

Modern PRNGs produce sequences that are statistically indistinguishable from random,
and they can be implemented with with periods so long that the universe will collapse
before they repeat. The existence of these generators raises the question of whether there
is any real difference between a good quality pseudo-random sequence and a sequence
generated by a “truly” random process. In A New Kind of Science, Wolfram argues that
there is not (pages 315–326).
Exercise 6.2. This exercise asks you to implement and test several PRNGs.

1. Write a program that implements one of the linear congruential generators described at http:
// en. wikipedia. org/ wiki/ Linear_ congruential_ generator ).

2. Download DieHarder, a random number test suite, from http: // phy. duke. edu/ ~rgb/

General/ rand_ rate. php and use it to test your PRNG. How does it do?

3. Read the documentation of Python’s random module. What PRNG does it use? Test it using
DieHarder.
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4. Implement a Rule 30 CA on a ring with a few hundred cells, run it for as many time steps as
you can in a reasonable amount of time, and output the center column as a sequence of bits.
Test it using DieHarder.

6.6 Determinism

The existence of Class 3 CAs is surprising. To understand how surprising, it is useful to
consider philosophical determinism (see http://en.wikipedia.org/wiki/Determinism).
Most philosophical stances are hard to define precisely because they come in a variety of
flavors. I often find it useful to define them with a list of statements ordered from weak to
strong:

D1: Deterministic models can make accurate predictions for some physical systems.

D2: Many physical systems can be modeled by deterministic processes, but some are in-
trinsically random.

D3: All events are caused by prior events, but many physical systems are nevertheless
fundamentally unpredictable.

D4: All events are caused by prior events, and can (at least in principle) be predicted.

My goal in constructing this range is to make D1 so weak that virtually everyone would
accept it, D4 so strong that almost no one would accept it, with intermediate statements
that some people accept.

The center of mass of world opinion swings along this range in response to historical devel-
opments and scientific discoveries. Prior to the scientific revolution, many people regarded
the working of the universe as fundamentally unpredictable or controlled by supernatu-
ral forces. After the triumphs of Newtonian mechanics, some optimists came to believe
something like D4; for example, in 1814 Pierre-Simon Laplace wrote

We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know all
forces that set nature in motion, and all positions of all items of which nature is
composed, if this intellect were also vast enough to submit these data to analy-
sis, it would embrace in a single formula the movements of the greatest bodies
of the universe and those of the tiniest atom; for such an intellect nothing would
be uncertain and the future just like the past would be present before its eyes.

This “intellect” came to be called “Laplace’s Demon”. See http://en.wikipedia.org/

wiki/Laplace's_demon. The word “demon” in this context has the sense of “spirit,” with
no implication of evil.

Discoveries in the 19th and 20th centuries gradually dismantled this hope. The thermo-
dynamic concept of entropy, radioactive decay, and quantum mechanics posed successive
challenges to strong forms of determinism.
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Figure 6.5: Rule 110 after 100 time steps.

In the 1960s chaos theory showed that in some deterministic systems prediction is only pos-
sible over short time scales, limited by the precision of measurement of initial conditions.

Most of these systems are continuous in space (if not time) and nonlinear, so the complexity
of their behavior is not entirely surprising. Wolfram’s demonstration of complex behavior
in simple cellular automata is more surprising—and disturbing, at least to a deterministic
world view.

So far I have focused on scientific challenges to determinism, but the longest-standing
objection is the conflict between determinism and human free will. Complexity science
provides a possible resolution of this apparent conflict; we come back to this topic in Sec-
tion 10.7.

6.7 Structures

The behavior of Class 4 CAs is even more surprising. Several 1-D CAs, most notably Rule
110, are Turing complete, which means that they can compute any computable function.
This property, also called universality, was proved by Matthew Cook in 1998. See http:

//en.wikipedia.org/wiki/Rule_110.

Figure 6.5 shows what Rule 110 looks like with an initial condition of a single cell and 100
time steps. At this time scale it is not apparent that anything special is going on. There are
some regular patterns but also some features that are hard to characterize.

Figure 6.6 shows a bigger picture, starting with a random initial condition and 600 time
steps:

After about 100 steps the background settles into a simple repeating pattern, but there are
a number of persistent structures that appear as disturbances in the background. Some
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Figure 6.6: Rule 110 with random initial conditions and 600 time steps.
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of these structures are stable, so they appear as vertical lines. Others translate in space,
appearing as diagonals with different slopes, depending on how many time steps they
take to shift by one column. These structures are called spaceships.

Collisions between spaceships yield different results depending on the types of the space-
ships and the phase they are in when they collide. Some collisions annihilate both ships;
others leave one ship unchanged; still others yield one or more ships of different types.

These collisions are the basis of computation in a Rule 110 CA. If you think of spaceships
as signals that propagate on wires, and collisions as gates that compute logical operations
like AND and OR, you can see what it means for a CA to perform a computation.
Exercise 6.3. This exercise asks you to experiment with Rule 110 and see how many spaceships
you can find.

1. Modify your program from the previous exercises so it starts with an initial condition that
yields the stable background pattern.

2. Modify the initial condition by adding different patterns in the center of the row and see which
ones yield spaceships. You might want to enumerate all possible patterns of n bits, for some
reasonable value of n. For each spaceship, can you find the period and rate of translation?
What is the biggest spaceship you can find?

6.8 Universality

To understand universality, we have to understand computability theory, which is about
models of computation and what they compute.

One of the most general models of computation is the Turing machine, which is an abstract
computer proposed by Alan Turing in 1936. A Turing machine is a 1-D CA, infinite in both
directions, augmented with a read-write head. At any time, the head is positioned over a
single cell. It can read the state of that cell (usually there are only two states) and it can
write a new value into the cell.

In addition, the machine has a register, which records the state of the machine (one of a
finite number of states), and a table of rules. For each machine state and cell state, the table
specifies an action. Actions include modifying the cell the head is over and moving one
cell to the left or right.

A Turing machine is not a practical design for a computer, but it models common computer
architectures. For a given program running on a real computer, it is possible (at least in
principle) to construct a Turing machine that performs an equivalent computation.

The Turing machine is useful because it is possible to characterize the set of functions that
can be computed by a Turing machine, which is what Turing did. Functions in this set are
called Turing computable.

To say that a Turing machine can compute any Turing-computable function is a tautology:
it is true by definition. But Turing-computability is more interesting than that.

It turns out that just about every reasonable model of computation anyone has come up
with is Turing complete; that is, it can compute exactly the same set of functions as the
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Turing machine. Some of these models, like lamdba calculus, are very different from a
Turing machine, so their equivalence is surprising.

This observation led to the Church-Turing Thesis, which is essentially a definition of what
it means to be computable. The “thesis” is that Turing-computability is the right, or at
least natural, definition of computability, because it describes the power of such a diverse
collection of models of computation.

The Rule 110 CA is yet another model of computation, and remarkable for its simplicity.
That it, too, turns out to be universal lends support to the Church-Turing Thesis.

In A New Kind of Science, Wolfram states a variation of this thesis, which he calls the “prin-
ciple of computational equivalence:”

Almost all processes that are not obviously simple can be viewed as computa-
tions of equivalent sophistication.

More specifically, the principle of computational equivalence says that sys-
tems found in the natural world can perform computations up to a maxi-
mal (“universal”) level of computational power, and that most systems do
in fact attain this maximal level of computational power. Consequently,
most systems are computationally equivalent (see mathworld.wolfram.com/

PrincipleofComputationalEquivalence.html).

Applying these definitions to CAs, Classes 1 and 2 are “obviously simple.” It may be
less obvious that Class 3 is simple, but in a way perfect randomness is as simple as per-
fect order; complexity happens in between. So Wolfram’s claim is that Class 4 behavior
is common in the natural world, and that almost all of the systems that manifest it are
computationally equivalent.
Exercise 6.4. The goal of this exercise is to implement a Turing machine. See http: // en.

wikipedia. org/ wiki/ Turing_ machine .

1. Start with a copy of CA.py named TM.py. Add attributes to represent the location of the head,
the action table and the state register.

2. Override step to implement a Turing machine update.

3. For the action table, use the rules for a 3-state busy beaver.

4. Write a class named TMDrawer that generates an image that represents the state of the tape
and the position and state of the head. For one example of what that might look like, see
http: // mathworld. wolfram. com/ TuringMachine. html .

6.9 Falsifiability

Wolfram holds that his principle is a stronger claim than the Church-Turing Thesis because
it is about the natural world rather than abstract models of computation. But saying that
natural processes “can be viewed as computations” strikes me as a statement about theory
choice more than a hypothesis about the natural world.
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Also, with qualifications like “almost” and undefined terms like “obviously simple,” his
hypothesis may be unfalsifiable. Falsifiability is an idea from the philosophy of science,
proposed by Karl Popper as a demarcation between scientific hypotheses and pseudo-
science. A hypothesis is falsifiable if there is an experiment, at least in the realm of practi-
cality, that would contradict the hypothesis if it were false.

For example, the claim that all life on earth is descended from a common ancestor is fal-
sifiable because it makes specific predictions about similarities in the genetics of modern
species (among other things). If we discovered a new species whose DNA was almost en-
tirely different from ours, that would contradict (or at least bring into question) the theory
of universal common descent.

On the other hand, “special creation,” the claim that all species were created in their cur-
rent form by a supernatural agent, is unfalsifiable because there is nothing that we could
observe about the natural world that would contradict it. Any outcome of any experiment
could be attributed to the will of the creator.

Unfalsifiable hypotheses can be appealing because they are impossible to refute. If your
goal is never to be proved wrong, you should choose hypotheses that are as unfalsifiable
as possible.

But if your goal is to make reliable predictions about the world—and this is at least one of
the goals of science—then unfalsifiable hypotheses are useless. The problem is that they
have no consequences (if they had consequences, they would be falsifiable).

For example, if the theory of special creation were true, what good would it do me to
know it? It wouldn’t tell me anything about the creator except that he has an “inordinate
fondness for beetles” (attributed to J. B. S. Haldane). And unlike the theory of common
descent, which informs many areas of science and bioengineering, it would be of no use
for understanding the world or acting in it.
Exercise 6.5. Falsifiability is an appealing and useful idea, but among philosophers of science it is
not generally accepted as a solution to the demarcation problem, as Popper claimed.

Read http: // en. wikipedia. org/ wiki/ Falsifiability and answer the following ques-
tions.

1. What is the demarcation problem?

2. How, according to Popper, does falsifiability solve the demarcation problem?

3. Give an example of two theories, one considered scientific and one considered unscientific,
that are successfully distinguished by the criterion of falsifiability.

4. Can you summarize one or more of the objections that philosophers and historians of science
have raised to Popper’s claim?

5. Do you get the sense that practicing philosophers think highly of Popper’s work?
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Figure 6.7: The logical structure of a simple physical model.

6.10 What is this a model of?

Some cellular automata are primarily mathematical artifacts. They are interesting because
they are surprising, or useful, or pretty, or because they provide tools for creating new
mathematics (like the Church-Turing thesis).

But it is not clear that they are models of physical systems. And if they are, they are highly
abstracted, which is to say that they are not very detailed or realistic.

For example, some species of cone snail produce a pattern on their shells that resembles
the patterns generated by cellular automata (seee en.wikipedia.org/wiki/Cone_snail).
So it is natural to suppose that a CA is a model of the mechanism that produces patterns
on shells as they grow. But, at least initially, it is not clear how the elements of the model
(so-called cells, communication between neighbors, rules) correspond to the elements of a
growing snail (real cells, chemical signals, protein interaction networks).

For conventional physical models, being realistic is a virtue, at least up to a point. If the
elements of a model correspond to the elements of a physical system, there is an obvious
analogy between the model and the system. In general, we expect a model that is more
realistic to make better predictions and to provide more believable explanations.

Of course, this is only true up to a point. Models that are more detailed are harder to work
with, and usually less amenable to analysis. At some point, a model becomes so complex
that it is easier to experiment with the system.

At the other extreme, simple models can be compelling exactly because they are simple.

Simple models offer a different kind of explanation than detailed models. With a detailed
model, the argument goes something like this: “We are interested in physical system S, so
we construct a detailed model, M, and show by analysis and simulation that M exhibits
a behavior, B, that is similar (qualitatively or quantitatively) to an observation of the real
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system, O. So why does O happen? Because S is similar to M, and B is similar to O, and we
can prove that M leads to B.”

With simple models we can’t claim that S is similar to M, because it isn’t. Instead, the
argument goes like this: “There is a set of models that share a common set of features.
Any model that has these features exhibits behavior B. If we make an observation, O, that
resembles B, one way to explain it is to show that the system, S, has the set of features
sufficient to produce B.”

For this kind of argument, adding more features doesn’t help. Making the model more
realistic doesn’t make the model more reliable; it only obscures the difference between the
essential features that cause O and the incidental features that are particular to S.

Figure 6.7 shows the logical structure of this kind of model. The features x and y are
sufficient to produce the behavior. Adding more detail, like features w and z, might make
the model more realistic, but that realism adds no explanatory power.
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Chapter 7

Game of Life

One of the first cellular automata to be studied, and probably the most popular of all time,
is a 2-D CA called “The Game of Life,” or GoL for short. It was developed by John H.
Conway and popularized in 1970 in Martin Gardner’s column in Scientific American. See
http://en.wikipedia.org/wiki/Conway_Game_of_Life.

The cells in GoL are arranged in a 2-D grid, either infinite in both directions or wrapped
around. A grid wrapped in both directions is called a torus because it is topographically
equivalent to the surface of a doughnut. See http://en.wikipedia.org/wiki/Torus.

Each cell has two states—live and dead—and 8 neighbors—north, south, east, west, and
the four diagonals. This set of neighbors is sometimes called a Moore neighborhood.

The rules of GoL are totalistic, which means that the next state of a cell depends on the
number of live neighbors only, not on their arrangement. The following table summarizes
the rules:

Number of Current Next
neighbors state state
2–3 live live
0–1,4–8 live dead
3 dead live
0–2,4–8 dead dead

This behavior is loosely analogous to real cell growth: cells that are isolated or over-
crowded die; at moderate densities they flourish.

GoL is popular because:

• There are simple initial conditions that yield surprisingly complex behavior.

• There are many interesting stable patterns: some oscillate (with various periods) and
some move like the spaceships in Wolfram’s Rule 110 CA.

• Like Rule 110, GoL is Turing complete.
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• Conway posed an intriguing conjecture—that there is no initial condition that yields
unbounded growth in the number of live cells—and offered $50 to anyone who could
prove or disprove it.

• The increasing availability of computers made it possible to automate the computa-
tion and display the results graphically. That turns out to be more fun than Conway’s
original implementation using a checkerboard.

7.1 Implementing Life

To implement GoL efficiently, we can take advantage of the multi-dimensional convolution
function in SciPy. SciPy is a Python package that provides functions related to scientific
computing. You can read about it at http://www.scipy.org/; if it is not already on your
system, you might have to install it.

Convolution is an operation common in digital image processing, where an image is an
array of pixels, and many operations involve computing a function of a pixel and its neigh-
bors.

The neighborhood is described by a smaller array, called a kernel that specifies the location
and weight of the neighbors. For example, this array:

kernel = numpy.array([[1,1,1],

[1,0,1],

[1,1,1]])

represents a neighborhood with eight neighbors, all with weight 1.

Convolution computes the weighted sum of the neighbors for each element of the array.
So this kernel computes the sum of the neighbors (not including the center element).

For example, if array represents a GoL grid with 1s for live cells and 0s for dead cells we
can use convolution to compute the number of neighbors for each cell.

import scipy.ndimage

neighbors = scipy.ndimage.filters.convolve(array, kernel)

Here’s an implementation of GoL using convolve:

import numpy

import scipy.ndimage

class Life(object):

def __init__(self, n, mode='wrap'):

self.n = n

self.mode = mode

self.array = numpy.random.random_integers(0, 1, (n, n))

self.weights = numpy.array([[1,1,1],

[1,10,1],

[1,1,1]])
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def step(self):

con = scipy.ndimage.filters.convolve(self.array,

self.weights,

mode=self.mode)

boolean = (con==3) | (con==12) | (con==13)

self.array = numpy.int8(boolean)

The attributes of the Life object are n, the number of rows and columns in the grid, mode,
which controls the behaviors of the boundary cells, array, which represents the grid, and
weights which is the kernel used to count the neighbors.

The weight of the center cell is 10, so the number of neighbors is 0-8 for dead cells and
10-18 for live cells.

In step, boolean is a boolean array with True for live cells; numpy.int8 converts it to
integers.

To display an animated sequence of grids, I use pyplot. Animation in pyplot is a little
awkward, but here’s a class that manages it:

import matplotlib

matplotlib.use('TkAgg')

import matplotlib.pyplot as pyplot

class LifeViewer(object):

def __init__(self, life, cmap=matplotlib.cm.gray_r):

self.life = life

self.cmap = cmap

self.fig = pyplot.figure()

pyplot.axis([0, life.n, 0, life.n])

pyplot.xticks([])

pyplot.yticks([])

self.pcolor = None

self.update()

life is a Life object. cmap is a color map provided by matplotlib; you can see the other
color maps at http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps.

self.fig is a reference to the matplotlib figure, and self.pcolor is a reference to the
pseudocolor plot created by update:

def update(self):

if self.pcolor:

self.pcolor.remove()

a = self.life.array

self.pcolor = pyplot.pcolor(a, cmap=self.cmap)

self.fig.canvas.draw()
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If there is already a plot, we have to remove it; then we create a new one and invoke draw

to update the display.

To run the animation, we need two methods:

def animate(self, steps=10):

self.steps = steps

self.fig.canvas.manager.window.after(1000, self.animate_callback)

pyplot.show()

def animate_callback(self):

for i in range(self.steps):

self.life.step()

self.update()

animate gets the animation started. It invokes pyplot.show, which sets up the GUI and
waits for user events, but first it has to invoke window.after to set up a callback, so that
animate_callback gets invoked after the window is set up. The first argument is the delay
in milliseconds. The second argument is a bound method (see Chapter 19 of Think Python).

animate_callback invokes step to update the Life object and update to update the dis-
play.
Exercise 7.1. Download my implementation of GoL from thinkcomplex. com/ Life. py .

Start the CA in a random state and run it until it stabilizes. What stable patterns can you identify?

7.2 Life patterns

If you run GoL from a random starting state, a number of stable patterns are likely to
appear. Blocks, boats, beehives, blinkers and gliders are among the most common.

People have spent embarrassing amounts of time finding and naming these patterns. If
you search the web, you will find many collections.

From most initial conditions, GoL quickly reaches a stable state where the number of live
cells is nearly constant (usually with a small amount of oscillation).

But there are a some simple starting conditions that take a long time to settle down and
yield a surprising number of live cells. These patterns are called “Methuselahs” because
they are so long-lived.

One of the simplest is the r-pentomino, which has only five cells in the shape of a “r,” hence
the name. It runs for 1103 steps and yields 6 gliders, 8 blocks, 4 blinkers, 4 beehives, 1 boat,
1 ship, and 1 loaf. One of the longest-lived small patterns is rabbits, which starts with 9
live cells and takes 17 331 steps to stabilize.
Exercise 7.2. Start with an r-pentomino as an initial condition and confirm that the results are
consistent with the description above. You might have to adjust the size of the grid and the boundary
behavior.
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7.3 Conway’s conjecture

The existence of long-lived patterns brings us back to Conway’s original question: are
there initial patterns that never stabilize? Conway thought not, but he described two kinds
of pattern that would prove him wrong, a “gun” and a “puffer train.” A gun is a stable
pattern that periodically produces a spaceship—as the stream of spaceships moves out
from the source, the number of live cells grows indefinitely. A puffer train is a translating
pattern that leaves live cells in its wake.

It turns out that both of these patterns exist. A team led by Bill Gosper discovered the first,
a glider gun now called Gosper’s Gun. Gosper also discovered the first puffer train. You
can find descriptions and animations of these patterns in several places on the Web.

There are many patterns of both types, but they are not easy to design or find. That is not a
coincidence. Conway chose the rules of GoL so that his conjecture would not be obviously
true or false. Of all the possible rules for a 2-D CA, most yield simple behavior; most
initial conditions stabilize quickly or grow unboundedly. By avoiding uninteresting CAs,
Conway was also avoiding Wolfram’s Class 1 and Class 2 behavior, and probably Class 3
as well.

If we believe Wolfram’s Principle of Computational Equivalence, we expect GoL to be in
Class 4. And it is. The Game of Life was proved Turing complete in 1982 (and again,
independently, in 1983). Since then several people have constructed GoL patterns that
implement a Turing machine or another machine known to be Turing complete.
Exercise 7.3. Many named patterns are available in portable file formats. Modify Life.py to parse
one of these formats and initialize the grid.

7.4 Realism

Stable patterns in GoL are hard not to notice, especially the ones that move. It is natural
to think of them as persistent entities, but remember that a CA is made of cells; there is no
such thing as a toad or a loaf. Gliders and other spaceships are even less real because they
are not even made up of the same cells over time. So these patterns are like constellations
of stars. We perceive them because we are good at seeing patterns, or because we have
active imaginations, but they are not real.

Right?

Well, not so fast. Many entities that we consider “real” are also persistent patterns of enti-
ties at a smaller scale. Hurricanes are just patterns of air flow, but we give them personal
names. And people, like gliders, are not made up of the same cells over time. But even if
you replace every cell in your body, we consider you the same person.

This is not a new observation—about 2500 years ago Heraclitus pointed out that you can’t
step in the same river twice—but the entities that appear in the Game of Life are a useful
test case for thinking about philosophical realism.

In the context of philosophy, realism is the view that entities in the world exist independent
of human perception and conception. By “perception” I mean the information that we get
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from our senses, and by “conception” I mean the mental model we form of the world. For
example, our vision systems perceive something like a 2-D projection of a scene, and our
brains use that image to construct a 3-D model of the objects in the scene.

Scientific realism pertains to scientific theories and the entities they postulate. A theory
postulates an entity if it is expressed in terms of the properties and behavior of the entity.
For example, Mendelian genetics postulates a “gene” as a unit that controls a heritable
characteristic. Eventually we discovered that genes are encoded in DNA, but for about 50
years, a gene was just a postulated entity. See http://en.wikipedia.org/wiki/Gene.

Again, I find it useful to state philosophical positions in a range of strengths, where SR1 is
a weak form of scientific realism and SR4 is a strong form:

SR1: Scientific theories are true or false to the degree that they approximate reality, but no
theory is exactly true. Some postulated entities may be real, but there is no principled
way to say which ones.

SR2: As science advances, our theories become better approximations of reality. At least
some postulated entities are known to be real.

SR3: Some theories are exactly true; others are approximately true. Entities postulated by
true theories, and some entities in approximate theories, are real.

SR4: A theory is true if it describes reality correctly, and false otherwise. The entities pos-
tulated by true theories are real; others are not.

SR4 is so strong that it is probably untenable; by such a strict criterion, almost all current
theories are known to be false. Most realists would accept something in the space between
SR1 and SR3.

7.5 Instrumentalism

But SR1 is so weak that it verges on instrumentalism, which is the view that we can’t say
whether a theory is true or false because we can’t know whether a theory corresponds to
reality. Theories are instruments that we use for our purposes; a theory is useful, or not, to
the degree that it is fit for its purpose.

To see whether you are comfortable with instrumentalism, consider the following state-
ments:

“Entities in the Game of Life aren’t real; they are just patterns of cells that people
have given cute names.”

“A hurricane is just a pattern of air flow, but it is a useful description because it
allows us to make predictions and communicate about the weather.”

“Freudian entities like the Id and the Superego aren’t real, but they are use-
ful tools for thinking and communicating about psychology (or at least some
people think so).”
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“Electrons are postulated entities in our best theories of electro-magnetism, but
they aren’t real. We could construct other theories, without postulating elec-
trons, that would be just as useful.”

“Many of the things in the world that we identify as objects are arbitrary collec-
tions like constellations. For example, a mushroom is just the fruiting body of a
fungus, most of which grows underground as a barely-contiguous network of
cells. We focus on mushrooms for practical reasons like visibility and edibility.”

“Some objects have sharp boundaries, but many are fuzzy. For example, which
molecules are part of your body: Air in your lungs? Food in your stomach?
Nutrients in your blood? Nutrients in a cell? Water in a cell? Structural parts
of a cell? Hair? Dead skin? Dirt? Bacteria on your skin? Bacteria in your gut?
Mitochondria? How many of those molecules do you include when you weigh
yourself. Conceiving the world in terms of discrete objects is useful, but the
entities we identify are not real.”

Give yourself one point for each statement you agree with. If you score 4 or more, you
might be an instrumentalist!

If you are more comfortable with some of these statements than others, ask yourself why.
What are the differences in these scenarios that influence your reaction? Can you make a
principled distinction between them?
Exercise 7.4. Read http: // en. wikipedia. org/ wiki/ Instrumentalism and construct a
sequence of statements that characterize instrumentalism in a range of strengths.

7.6 Turmites
If you generalize the Turing machine to two dimensions, or add a read-write head to a 2-D
CA, the result is a cellular automaton called a Turmite. It is named after a termite because
of the way the read-write head moves, but spelled wrong as an homage to Alan Turing.

The most famous Turmite is Langton’s Ant, discovered by Chris Langton in 1986. See
http://en.wikipedia.org/wiki/Langton_ant.

The ant is a read-write head with four states, which you can think of as facing north, south,
east or west. The cells have two states, black and white.

The rules are simple. During each time step, the ant checks the color of the cell is it on. If it
is black, the ant turns to the right, changes the cell to white, and moves forward one space.
If the cell is white, the ant turns left, changes the cell to black, and moves forward.

Given a simple world, a simple set of rules, and only one moving part, you might expect
to see simple behavior—but you should know better by now. Starting with all white cells,
Langton’s ant moves in a seemingly random pattern for more than 10 000 steps before it
enters a cycle with a period of 104 steps. After each cycle, the ant is translated diagonally,
so it leaves a trail called the “highway.”

If you start with multiple Turmites, they interact with each other in seemingly complex
ways. If one Turmite is on the highway, another can follow it, overtake it, and cause it to
reverse its pattern, moving back up the highway and leaving only white cells behind.
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Exercise 7.5. Write an implementation of Langton’s Ant.

You can find a solution in TurmiteWorld.py, which is part of Swampy. See http: //

thinkpython. com/ swampy/ .



Chapter 8

Fractals

To understand fractals, we have to start with dimensions. The dimension of a space is the
number of coordinates we need to specify a point in a space. A number line takes one
coordinate, a Euclidean plane takes 2, a solid takes 3, etc. See http://en.wikipedia.org/

wiki/Dimension.

For simple geometric objects, dimension is defined in terms of scaling behavior; that is,
how “size” depends on length, l. For example, the area of a square is l2; the exponent, 2,
indicates that a square is 2-dimensional. Similarly, the volume of a cube is l3 and a cube is
3-dimensional. A line has dimension 1 and, if we think of a point as infinitesimally small,
it has dimension 0.

Fractal dimension is a more precise and more general extension of this definition. There
are several versions; the one I find easiest to understand and apply is the box-counting
dimension, which is defined for a set, S, of points in a d-dimensional space. See http:

//en.wikipedia.org/wiki/Box-counting_dimension.

To compute the box-counting dimension, we divide the space into a grid where the size of
each cell is ε. Then we count N(ε), the number of cells that contain at least one element of
S. As ε gets smaller, N(ε) gets bigger. For many objects the relationship has the form:

N(ε) ∼ (1/ε)D

The box counting dimension, Dbox, is defined to be the exponent, D. Taking the log of both
sides and rearranging yields:

Dbox =
logN(ε)

log (1/ε)

More formally, Dbox is the limit of this ratio as ε goes to zero.
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Figure 8.1: Rule 254 after 4 timesteps.

Figure 8.2: Rule 254 after 8 timesteps.

8.1 Fractal CAs

To investigate the behavior of fractal dimension, we’ll apply it to cellular automata. Box-
counting for CAs is simple; we just count the number of “on” cells in each time step and
add them up.

As an example, consider Rule 254. Figure 8.1 shows what it looks like after t = 4 time
steps. And Figure 8.2 shows what it looks like after t = 8 time steps.

As t increases, we can imagine the triangle getting bigger, but for purposes of box-counting,
it makes more sense to imagine the cells getting smaller. In that case the size of the cells, ε,
is just 1/t.

After 1 time step, there is 1 black cell. After 2 time steps, there are a total of 4, then 9, then
16, then 25. As expected, the area of the triangle goes up quadratically. More formally,
N(ε) = (1/ε)2, so Dbox = 2. And we conclude that a triangle is 2-dimensional.

Rule 18 is more interesting. Figure 8.3 shows what it looks like after 64 steps. And Fig-
ure 8.4 shows N(ε) versus 1/ε on a log-log scale.

To estimate Dbox I fit a line to this curve; its slope is 1.56. Dbox is a non-integer, which
means that this set of points is a fractal. As t increases, the slope approaches log3/log2,
which is the fractal dimension of Sierpiński’s triangle. See http://en.wikipedia.org/

wiki/Sierpinski_triangle.
Exercise 8.1. Write a function that takes a CA object, plots N(ε) versus 1/ε, where ε = 1/t, and
estimates Dbox.

Can you find other CAs with non-integer fractal dimensions? Be careful, you might have to run the
CA for a while before Dbox converges.

Here are some functions from numpy you might find useful: cumsum, log, and polyfit.
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Figure 8.3: Rule 18 after 64 time steps.
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Figure 8.4: N(ε) versus 1/ε for Rule 18.
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You can download my solution from fractal. py .
Exercise 8.2. In 1990 Bak, Chen and Tang proposed a cellular automaton that is an abstract model
of a forest fire. Each cell is in one of three states: empty, occupied by a tree, or on fire.

The rules of the CA are:

1. An empty cell becomes occupied with probability p.

2. A cell with a tree burns if any of its neighbors is on fire.

3. A cell with a tree spontaneously burns, with probability f , even if none of its neighbors is on
fire.

4. A cell with a burning tree becomes an empty cell in the next time step.

Read about this model at http: // en. wikipedia. org/ wiki/ Forest-fire_ model and write
a program that implements it. You might want to start with a copy of thinkcomplex. com/ Life.
py .

Starting from a random initial condition, run the CA until it reaches a steady state where the
number of trees no longer increases or decreases consistently. You might have to tune p and f .

In steady state, is the geometry of the forest fractal? What is its fractal dimension?

8.2 Percolation

Many of the CAs we have seen so far are not physical models; that is, they are not intended
to describe systems in the real world. But some CAs are designed explicitly as physical
models. In this section we consider a simple grid-based model of percolation; in the next
chapter we see examples that model forest fires, avalanches, and earthquakes.

Percolation is a process in which a fluid flows through a semi-porous material. Exam-
ples include oil in rock formations, water in paper, and hydrogen gas in micropores. Per-
colation models are also used to study systems that are not literally percolation, includ-
ing epidemics and networks of electrical resistors. See http://en.wikipedia.org/wiki/

Percolation_theory.

Percolation processes often exhibit a phase change; that is, an abrupt transition from one
behavior (low flow) to another (high flow) with a small change in a continuous parameter
(like the porosity of the material). This transition is sometimes called a “tipping point.”

There are two common models of these systems: bond percolation and site percolation.
Bond percolation is based on a grid of sites, where each site is connected to four neighbors
by a bond. Each bond is either porous or non-porous. A set of sites that are connected
(directly or indirectly) by porous bonds is called a cluster. In the vocabulary of graphs, a
site is a vertex, a bond is an edge, and a cluster is a connected subgraph.

Site percolation is based on a grid of cells, where each cell represents a porous segment of
the material or a non-porous segment. If two porous cells are adjacent, they are considered
connected; a set of connected cells is considered a cluster.
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The rate of flow in a percolation system is primarily determined by whether or not the
porous cells form a path all the way through the material, so it is useful to know whether
a set of cells (or bonds) contains a “spanning cluster.” There are several definitions of a
spanning cluster; the choice depends on the system you are trying to model. The simplest
choice is a cluster that reaches the top and bottom row of the grid.

To model the porosity of the material, it is common to define a parameter, p, which the
probability that any cell (or bond) is porous. For a given value of p, you can estimate R(p),
which is the probability that there is a spanning cluster, by generating a large number of
random grids and computing the fraction that contain a spanning cluster. This way of
estimating probabilities is called a “Monte Carlo simulation” because it a similar to a game
of chance.

Percolation models are often used to compute a critical value, pc, which is the fraction
of porous segments where the phase change occurs; that is, where the probability of a
spanning cluster increases quickly from near 0 to near 1.
Exercise 8.3. The paper “Efficient Monte Carlo Algorithm and High-Precision Results for Per-
colation,” by Newman and Ziff, presents an efficient algorithm for checking whether there is a
path through a grid. You can download this paper from http: // arxiv. org/ abs/ cond-mat/

0005264 . Read it paper, implement their algorithm, and see if you can reproduce their Figure 2(a).

1. What is the difference between what Newman and Ziff call the “microcanonical ensemble”
and the “canonical ensemble”? You might find it useful to read about the use of these
terms in statistical mechanics at http: // en. wikipedia. org/ wiki/ Statistical_

mechanics . Which one is easier to estimate by Monte Carlo simulation?

2. What algorithm do they use to merge two clusters efficiently?

3. What is the primary reason their algorithm is faster than the simpler alternative?
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Chapter 9

Self-organized criticality

9.1 Sand piles

In 1987 Bak, Tang and Wiesenfeld published a paper in Physical Review Letters, “Self-
organized criticality: an explanation of 1/ f noise.” You can download it from http://

prl.aps.org/abstract/PRL/v59/i4/p381_1.

The title takes some explaining. A system is “critical” if it is in transition between two
phases; for example, water at its freezing point is a critical system.

A variety of critical systems demonstrate common behaviors:

• Long-tailed distributions of some physical quantities: for example, in freezing water
the distribution of crystal sizes is characterized by a power law.

• Fractal geometries: freezing water tends to form fractal patterns—the canonical ex-
ample is a snowflake. Fractals are characterized by self-similarity; that is, parts of the
pattern resemble scaled copies of the whole.

• Variations in time that exhibit pink noise: what we call “noise” is a time series with
many frequency components. In “white” noise, all of the components have equal
power. In “pink” noise, low-frequency components have more power than high-
frequency components. Specifically, the power at frequency f is proportional to 1/ f .
Visible light with this power spectrum looks pink, hence the name.

Critical systems are usually unstable. For example, to keep water in a partially frozen state
requires active control of the temperature. If the system is near the critical temperature, a
small deviation tends to move the system into one phase or the other.

Many natural systems exhibit characteristic behaviors of criticality, but if critical points
are unstable, they should not be common in nature. This is the puzzle Bak, Tang and
Wiesenfeld address. Their solution is called self-organized criticality (SOC), where “self-
organized” means that from any initial condition, the system tends to move toward a criti-
cal state, and stay there, without external control.
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As an example, they propose a model of a sand pile. The model is not realistic, but it has
become the standard example of self-organized criticality.

The model is a 2-D cellular automaton where the state of each cell, z(i, j), represents the
slope of a part of a sand pile. During each time step, each cell is checked to see whether
it exceeds some critical value, K. If so, an “avalanche” occurs that transfers sand to neigh-
boring cells; specifically, z(i, j) is decreased by 4, and each of the 4 neighbors is increased
by 1.

At the perimeter of the grid, all cells are kept at z = 0, so the excess spills over the edge. To
initialize the system, Bak et al. start with all z > K and evolve the system until it stabilizes.
Then they observe the effect of small perturbations; they choose a cell at random, increment
its value by 1, and evolve the system, again, until it stabilizes.

For each perturbation, they measure D, the total number of cells that are affected by the
resulting avalanche. Most of the time, D is small, usually 1. But occasionally a large
avalanche affects a substantial fraction of the grid. The distribution of D turns out to be
long-tailed, which supports the claim that the system is in a critical state.
Exercise 9.1. Read the paper and write a program that implements their CA. You might want to
start with a copy of thinkcomplex. com/ Life. py .

See if you can reproduce their Figure 2(a), which shows the distribution of cluster sizes.

After the system has been running for a while, compute its fractal dimension.

9.2 Spectral density
To understand 1/ f noise, we have to take a detour to understand spectral density. If h(t)
is a signal that varies in time, it can be described by its power spectral density, P( f ), which
is a function that maps from a frequency, f , to the amount of power the signal contains at
that frequency.

This analysis applies to any varying signal, but I use sound as an example. The note we
call “middle A” corresponds to a frequency of 440 cycles per second, or Hertz (Hz). If you
strike a middle A tuning fork, it produces a sound that is close to a pure sine wave at 440
Hz. But if you play the same note on a piano, what you hear is a complex sound that
contains components at many different frequencies. The frequency with the most power is
440, which is why we perceive the sound as a middle A, but there are also components at
880, 1320 and many higher frequencies. These components are called “harmonics.”

What we identify as the pitch of a sound is usually the dominant frequency component.
But if a sound contains many different components with roughly the same power, it has no
particular pitch. To our ears, it sounds like noise.

Spectral analysis is the process of taking a signal and computing its spectral density1. The
first step is to compute the Fourier transform of h(t):

H(ω) =
∫ ∞

−∞
h(t)eiωtdt

1The presentation here follows Press et al, Numerical Recipes in C.
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where ω = 2π f is the angular frequency in radians per second (rather than cycles per
second). The advantage of working with angular frequency is that it reduces the number
of times the term 2π appears.

H(ω) is written with a capital letter because it is a complex number, which you can think of
as a vector with a magnitude, |H(ω)|, and an angle. The power spectral density is related
to the Fourier transform by the following relation:

P( f ) = |H(2π f )|2

Depending on the application, we may not care about the difference between f and − f . In
that case, we would use the one-sided power spectral density:

P( f ) = |H(2π f )|2 + |H(−2π f )|2

So far we have assumed that h(t) is a continuous function, but often it is a series of values
at discrete times. In that case we can replace the continuous Fourier transform with the
discrete Fourier transform (DFT). Suppose that we have N values hk with k in the range
from 0 to N − 1. The DFT is written Hn, where n is an index related to frequency:

Hn =
N−1

∑
k=0

hke2πikn/N (9.1)

Each element of this sequence corresponds to a particular frequency. If the elements of hk
are equally spaced in time, with time step d, the frequency that corresponds to Hn is

fn =
n

Nd

To get the one-sided power spectral density, you can compute Hn with n in the range−N/2
to N/2, and

Pn = |Hn|2 + |H−n|2

To avoid negative indices, it is conventional to compute Hn with n in the range 0 to N − 1
and use the relation H−n = HN−n to convert.
Exercise 9.2. Write a function named dft that takes h, a sequence of N values, and returns the
sequence Hn with n in the range 0 to N − 1.

Python provides support for complex numbers as a built-in type. The function complex takes two
arguments, a real part and an imaginary part, and returns a complex number:

>>> complex(1, 1)

(1+1j)

The cmath module provides math functions that support complex numbers:



84 Chapter 9. Self-organized criticality

>>> import cmath

>>> i = complex(0, 1)

>>> N = 128

>>> cmath.exp(2 * math.pi * i / N)

(0.99879545620517241+0.049067674327418015j)

>>> abs(complex(3, 4))

5.0

What is the order of growth run time of dft?

Hoisting is a way to speed up code by moving an expression that does not change out of a loop. See
http: // en. wikipedia. org/ wiki/ Loop-invariant_ code_ motion . You can make your
code easier to read and more efficient by hoisting:

W = e2πi/N (9.2)

What effect does hoisting have on the order of growth?

9.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the DFT. It is often
attributed to Cooley and Tukey, but it was independently discovered several times earlier.
See http://en.wikipedia.org/wiki/Fast_Fourier_transform.

The first step toward the FFT is to rewrite Equation 9.1 with the substitution W = e2πi/N :

Hn =
N−1

∑
k=0

hkWnk (9.3)

The second step is the Danielson-Lanczos Lemma which states

Hn = He
n + Wk Ho

n

where He is the DFT of the even-indexed elements of h, and Ho is the DFT of the odd-
indexed elements. This lemma follows naturally from the definition of Hn; you can see a
proof at http://mathworld.wolfram.com/Danielson-LanczosLemma.html.

This lemma suggests a recursive algorithm for evaluating the DFT of a sequence h. If h has
only a single element, then H = h. Otherwise:

1. Split h into he and ho.

2. Compute He and Ho by making two recursive calls.

3. Use the lemma to combine He and Ho to form H.
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If H has 2N elements, He and Ho have only N. In order to merge them, you have to wrap
around, but you can do that because He

n+N = He
n.

This recursive algorithm is the Fast Fourier Transform.
Exercise 9.3. Write a function called fft that implements the Fast Fourier Transform. To check
your function, you can compare it to the function fft provided by the module numpy.fft.

What is the order of growth run time of your implementation? What is the order of growth for the
space required?

Most FFT implementations use a clever indexing scheme to avoid copying the sequence; in-
stead, they transform the elements in place. You can read http: // en. wikipedia. org/ wiki/

Butterfly_ diagram to get the details.

Once your fft is working, write a function named psd that takes a sequence, h, and returns its
one-sided power spectral density, P.

You can download my solution from thinkcomplex. com/ Fourier. py .

9.4 Pink noise

In a followup paper in 1988, Bak, Tang and Wiesenfeld looked at a time series F(t), which
is the number of cells that exceed the threshold during each time step. If I understand their
model, they seed avalanches by incrementing the state of a random cell at random inter-
vals; for example, there might be a fixed probability during each time step that a cell is in-
cremented. In this model (unlike the previous one) there may be more than one avalanche
at a time.

A plot of F(t) shows that it is noisy, but not completely random, which is consistent with
pink, or 1/ f noise. As a stronger test, they plot the power spectral density of F on a log-log
scale. If F is 1/ f noise, then

Pn ∼ 1/ fn =
Nd
n

Since the units of time in this model are arbitrary, we can choose d = 1. Taking the log of
both sides yields:

log Pn ∼ log N − log n

So on a log-log scale, the PSD of 1/ f noise is a straight line with slope -1.
Exercise 9.4. Modify your implementation of the sand pile model to increment a random cell at
random intervals and record the number of cells that exceed the threshold during each time step.

To estimate the average PSD, you can divide the time series into chunks of 128 to 256 values,
compute the PSD of each chunk, and average together the PSDs. Plot the result on a log-log scale
and estimate the slope.
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ObservableSystem A ObservableSystem B

BehaviorModel

membership membership

Figure 9.1: The logical structure of a holistic model.

Exercise 9.5. In a 1989 paper, “Self-organized criticality in the ’Game of Life’,” Bak, Chen and
Creutz present evidence that the Game of Life is a self-organized critical system (http: // www.
nature. com/ nature/ journal/ v342/ n6251/ abs/ 342780a0. html ).

To replicate their tests, run the GoL CA until it stabilizes, then choose a random cell and toggle it.
Run the CA until it stabilizes again, keeping track of t, the number of time steps it takes, and s, the
number of cells affected. Repeat for a large number of trials and plot the distributions of t and s.
Also, see if you can think of an effective experiment to test for 1/ f noise.

Some later work has called the conclusions of this paper into question. You might want to read Blok,
“Life without bounds,” at http: // zoology. ubc. ca/ ~rikblok/ lib/ blok95b. html .

9.5 Reductionism and Holism

The original paper by Bak, Tang and Wiesenfeld is one of the most frequently-cited papers
in the last few decades. Many new systems have been shown to be self-organized critical,
and the sand-pile model, in particular, has been studied in detail.

As it turns out, the sand-pile model is not a very good model of a sand pile. Sand is
dense and not very sticky, so momentum has a non-negligible effect on the behavior of
avalanches. As a result, there are fewer very large and very small avalanches than the
model predicts, and the distribution is not long tailed.

Bak has suggested that this observation misses the point. The sand pile model is not meant
to be a realistic model of a sand pile; it is meant to be a simple example of a broad category
of models.

To understand this point, it is useful to think about two kinds of models, reductionist and
holistic. A reductionist model describes a system by describing its parts and their inter-
actions. When a reductionist model is used as an explanation, it depends on an analogy
between the components of the model and the components of the system.

For example, to explain why the ideal gas law holds, we can model the molecules that
make up a gas with point masses, and model their interactions as elastic collisions. If you
simulate or analyze this model you find that it obeys the ideal gas law. This model is
satisfactory to the degree that molecules in a gas behave like molecules in the model. The
analogy is between the parts of the system and the parts of the model.
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Holistic models are more focused on similarities between systems and less interested in
analogous parts. A holistic approach to modeling often consists of two steps, not necessar-
ily in this order:

• Identify a kind of behavior that appears in a variety of systems.

• Find the simplest model that demonstrates that behavior.

For example, in The Selfish Gene, Richard Dawkins suggests that genetic evolution is
just one example of an evolutionary system. He identifies the essential elements of the
category—discrete replicators, variability and differential reproduction—and proposes
that any system that has these elements displays similar behavior, including complexity
without design.

As another example of an evolutionary system, he proposes memes, which are thoughts
or behaviors that are “replicated” by transmission from person to person. As memes com-
pete for the resource of human attention, they evolve in ways that are similar to genetic
evolution.

Critics of memetics have pointed out that memes are a poor analogy for genes. Memes
differ from genes in many obvious ways. But Dawkins has argued that these differences
are beside the point because memes are not supposed to be analogous to genes. Rather,
memetics and genetics are examples of the same category—evolutionary systems. The
differences between them emphasize the real point, which is that evolution is a general
model that applies to many seemingly disparate systems. The logical structure of this
argument is shown in Figure 9.1.

Bak has made a similar argument that self-organized criticality is a general model for a
broad category of systems. According to Wikipedia, “SOC is typically observed in slowly-
driven non-equilibrium systems with extended degrees of freedom and a high level of
nonlinearity.”

Many natural systems demonstrate behaviors characteristic of critical systems. Bak’s ex-
planation for this prevalence is that these systems are examples of the broad category of
self-organized criticality. There are two ways to support this argument. One is to build
a realistic model of a particular system and show that the model exhibits SOC. The sec-
ond is to show that SOC is a feature of many diverse models, and to identify the essential
characteristics those models have in common.

The first approach, which I characterize as reductionist, can explain the behavior of a partic-
ular system. The second, holistic, approach, explains the prevalence of criticality in natural
systems. They are different models with different purposes.

For reductionist models, realism is the primary virtue, and simplicity is secondary. For
holistic models, it is the other way around.
Exercise 9.6. Read http: // en. wikipedia. org/ wiki/ Reductionism and http: // en.

wikipedia. org/ wiki/ Holism .
Exercise 9.7. In a 1996 paper in Nature, Frette et al report the results of experiments with rice piles
(http: // www. nature. com/ nature/ journal/ v379/ n6560/ abs/ 379049a0. html ). They
find that some kinds of rice yield evidence of critical behavior, but others do not.
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Similarly, Pruessner and Jensen studied large-scale versions of the forest fire model (using an al-
gorithm similar to Newman and Ziff’s). In their 2004 paper, “Efficient algorithm for the forest fire
model,” they present evidence that the system is not critical after all (http: // pre. aps. org/
abstract/ PRE/ v70/ i6/ e066707 ).

How do these results bear on Bak’s claim that SOC explains the prevalence of critical phenomena in
nature?
Exercise 9.8. In The Fractal Geometry of Nature, Benoit Mandelbrot proposes what he calls a
“heretical” explanation for the prevalence of long-tailed distributions in natural systems (page 344).
It may not be, as Bak suggests, that many systems can generate this behavior in isolation. Instead
there may be only a few, but there may be interactions between systems that cause the behavior to
propagate.

To support this argument, Mandelbrot points out:

• The distribution of observed data is often “the joint effect of a fixed underlying ’true distribu-
tion’ and a highly variable ’filter.’"

• Long-tailed distributions are robust to filtering; that is, “a wide variety of filters leave their
asymptotic behavior unchanged.”

What do you think of this argument? Would you characterize it as reductionist or holist?

9.6 SOC, causation and prediction

If a stock market index drops by a fraction of a percent in a day, there is no need for an
explanation. But if it drops 10%, people want to know why. Pundits on television are
willing to offer explanations, but the real answer may be that there is no explanation.

Day-to-day variability in the stock market shows evidence of criticality: the distribution of
value changes is long-tailed and the time series exhibits 1/ f noise. If the stock market is
a self-organized critical system, we should expect occasional large changes as part of the
ordinary behavior of the market.

The distribution of earthquake sizes is also long-tailed, and there are simple models of
the dynamics of geological faults that might explain this behavior. If these models are
right, they imply that large earthquakes are unexceptional; that is, they do not require
explanation any more than small earthquakes do.

Similarly, Charles Perrow has suggested that failures in large engineered systems, like nu-
clear power plants, are like avalanches in the sand pile model. Most failures are small,
isolated and harmless, but occasionally a coincidence of bad fortune yields a catastrophe.
When big accidents occur, investigators go looking for the cause, but if Perrow’s “normal
accident theory” is correct, there may be no special cause of large failures.

These conclusions are not comforting. Among other things, they imply that large earth-
quakes and some kinds of accidents are fundamentally unpredictable. It is impossible to
look at the state of a critical system and say whether a large avalanche is “due.” If the
system is in a critical state, then a large avalanche is always possible. It just depends on the
next grain of sand.
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In a sand-pile model, what is the cause of a large avalanche? Philosophers sometimes
distinguish the proximate cause, which is most immediately responsible, from the ultimate
cause, which is, for whatever reason, considered the true cause.

In the sand-pile model, the proximate cause of an avalanche is a grain of sand, but the
grain that causes a large avalanche is identical to any other grain, so it offers no special
explanation. The ultimate cause of a large avalanche is the structure and dynamics of the
systems as a whole: large avalanches occur because they are a property of the system.

Many social phenomena, including wars, revolutions, epidemics, inventions and terrorist
attacks, are characterized by long-tailed distributions. If the reason for these distributions
is that social systems are critical, that suggests that major historical events may be funda-
mentally unpredictable and unexplainable.
Exercise 9.9. Read about the “Great Man” theory of history at http: // en. wikipedia. org/
wiki/ Great_ man_ theory . What implication does self-organized criticality have for this theory?
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Chapter 10

Agent-based models

10.1 Thomas Schelling

In 1971 Thomas Schelling published “Dynamic Models of Segregation,” which proposes a
simple model of racial segregation. The Schelling model of the world is a grid; each cell
represents a house. The houses are occupied by two kinds of “agents,” labeled red and
blue, in roughly equal numbers. About 10% of the houses are empty.

At any point in time, an agent might be happy or unhappy, depending on the other agents
in the neighborhood. The neighborhood of each house is the set of eight adjacent cells.
In one version of the model, agents are happy if they have at least two neighbors like
themselves, and unhappy if they have one or zero.

The simulation proceeds by choosing an agent at random and checking to see whether it is
happy. If so, then nothing happens; if not, the agent chooses one of the unoccupied cells at
random and moves.

You might not be surprised to hear that this model leads to some segregation, but you
might be surprised by the degree. Fairly quickly, clusters of similar agents appear. The
clusters grow and coalesce over time until there are a small number of large clusters and
most agents live in homogeneous neighborhoods.

If you did not know the process and only saw the result, you might assume that the agents
were racist, but in fact all of them would be perfectly happy in a mixed neighborhood.
Since they prefer not to be greatly outnumbered, they might be considered xenophobic at
worst. Of course, these agents are a wild simplification of real people, so it may not be
appropriate to apply these descriptions at all.

Racism is a complex human problem; it is hard to imagine that such a simple model could
shed light on it. But in fact it provides a strong argument about the relationship between
a system and its parts: if you observe segregation in a real city, you cannot conclude that
individual racism is the immediate cause, or even that the people in the city are racists.

But we have to keep in mind the limitations of this argument: Schelling’s model demon-
strates a possible cause of segregation, but says nothing about actual causes.
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Exercise 10.1. Implement Schelling’s model in a grid. From random initial conditions, how does
the system evolve?

Define a statistic that measures the degree of segregation, and plot this statistic over time.

Experiment with the parameters of the model. What happens as the agents become more tolerant?
What happens if the agents are only happy in mixed neighborhoods; that is, if they are unhappy if
too many of their neighbors are like themselves?
Exercise 10.2. In a recent book, The Big Sort, Bill Bishop argues that American society is in-
creasingly segregated by political opinion, as people choose to live among like-minded neighbors.

The mechanism Bishop hypothesizes is not that people, like the agents in Schelling’s model, are more
likely to move if they are isolated, but that when they move for any reason, they are likely to choose
a neighborhood with people like themselves.

Modify your implementation of Schelling’s model to simulate this kind of behavior and see if it yields
similar degrees of segregation.

10.2 Agent-based models

Schelling’s model is one of the first, and one of the most famous, agent-based models.
Since the 1970s, agent-based modeling has become an important tool in economics and
other social sciences, and in some natural sciences.

The characteristics of agent-based models include:

• Agents that model intelligent behavior, usually with a simple set of rules.

• The agents are usually situated in space (or in a network), and interact with each
other locally.

• They usually have imperfect, local information.

• Often there is variability between agents.

• Often there are random elements, either among the agents or in the world.

Agent-based models are useful for modeling the dynamics of systems that are not in equi-
librium (although they are also used to study equilibrium). And they are particularly use-
ful for understanding relationships between individual decisions and system behavior, or
as in the title of Schelling’s book, Micromotives and Macrobehavior.

For more about agent-based modeling, see http://en.wikipedia.org/wiki/

Agent-based_model.
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10.3 Traffic jams
What causes traffic jams? In some cases there is an obvious cause, like an accident, a speed
trap, or something else that disturbs the flow of traffic. But other times traffic jams appear
for no apparent reason.

Agent-based models can help explain spontaneous traffic jams. As an example, I imple-
mented a simple highway simulation, based on a model in Resnick, Turtles, Termites and
Traffic Jams.

You can download my program from thinkcomplex.com/Highway.py. It uses
TurtleWorld, which is part of Swampy. See thinkpython.com/swampy.

This module defines two classes: Highway, which inherits from TurtleWorld, and Driver,
which inherits from Turtle.

The Highway is a one-lane road that forms a circle, but it is displayed as a series of rows
that spiral down the canvas.

Each driver starts with a random position and speed. At each time step, each Driver ac-
celerates or brakes based on the distance between it and the Driver in front. Here is an
example:

def choose_acceleration(self, dist):

if dist < self.safe_distance:

return -1

else:

return 0.3

If the following distance is too short, the Driver brakes; otherwise it accelerates.
Highway.py enforces two other constraints: there is a speed limit for each driver, and if
the current speed would cause a collision, the Driver comes to a complete stop.

If you run Highway.py you will probably see a traffic jam, and the natural question is,
“Why?” There is nothing about the Highway or Driver behavior that obviously causes
traffic jams.
Exercise 10.3. Experiment with the parameters of the system to identify the factors that are neces-
sary and sufficient to cause traffic jams. Some of the factors to explore are:

Density: What happens as the number of drivers increases (or the length of the highway decreases)?

Acceleration and braking: What happens if drivers accelerate faster or brake more gently?

Safe distance: What happens as the safe distance between drivers changes?

Heterogeneity: What if all drivers are not the same; for example, if they have different speed limits
or following distances?

10.4 Boids
In 1987 Craig Reynolds published “Flocks, herds and schools: A distributed behavioral
model,” which describes an agent-based model of herd behavior. You can download his
paper from http://www.red3d.com/cwr/papers/1987/boids.html.
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Agents in this models are called “boids,” which is both a contraction of “bird-oid” and an
accented pronunciation of “bird” (although boids are also used to model fish and herding
land animals).

Each agent simulates three behaviors:

Collision avoidance: avoid obstacles, including other birds.

Flock centering: move toward the center of the flock.

Velocity matching: align velocity with neighboring birds.

Boids make decisions based on local information only; each boid only sees (or pays atten-
tion to) other boids in its field of vision and range.

The Visual package, also known as VPython, is well-suited for implementing boids. It
provides simple 3-D graphics as well as vector objects and operations that are useful for
the computations.

You can download my implementation from thinkcomplex.com/Boids.py. It is based in
part on the description of boids in Flake, The Computational Beauty of Nature.

The program defines two classes: Boid, which implements the boid algorithm, and World,
which contains a list of Boids and a “carrot” the Boids are attracted to.

The boid algorithm uses get_neighbors to find other boids in the field of view:
def get_neighbors(self, others, radius, angle):

boids = []

for other in others:

if other is self:

continue

offset = other.pos - self.pos

# if not in range, skip it

if offset.mag > radius:

continue

# if not within viewing angle, skip it

if self.vel.diff_angle(offset) > angle:

continue

# otherwise add it to the list

boids.append(other)

return boids

get_neighbors uses vector subtraction to compute the vector from self to other. The
magnitude of this vector is the distance to the other boid. diff_angle computes the angle
between the velocity of self, which is also the line of sight, and the other boid.

center finds the center of mass of the boids in the field of view and returns a vector point-
ing toward it:
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def center(self, others):

close = self.get_neighbors(others, r_center, a_center)

t = [other.pos for other in close]

if t:

center = sum(t)/len(t)

toward = vector(center - self.pos)

return limit_vector(toward)

else:

return null_vector

Similarly, avoid finds the center of mass of any obstacles in range and returns a vector
pointing away from it, copy returns the difference between the current heading and the
average heading of the neighbors, and love computes the heading toward the carrot.

set_goal computes the weighed sum of these goals and sets the overall goal:

def set_goal(self, boids, carrot):

self.goal = (w_avoid * self.avoid(boids, carrot) +

w_center * self.center(boids) +

w_copy * self.copy(boids) +

w_love * self.love(carrot))

Finally, move updates the velocity, position and attitude of the boid:

def move(self, mu=0.1):

self.vel = (1-mu) * self.vel + mu * self.goal

self.vel.mag = 1

self.pos += dt * self.vel

self.axis = b_length * self.vel.norm()

The new velocity is the weighted sum of the old velocity and the goal. The parameter
mu determines how quickly the birds can change speed and direction. The time step, dt
determines how far the boids move.

Many parameters influence flock behavior, including the range, angle and weight for each
behavior, and the maneuverability, mu.

These parameters determine the ability of the boids to form and maintain a flock and the
patterns of motion and organization in the flock. For some settings, the boids resemble a
flock of birds; other settings resemble a school of fish or a cloud flying insects.
Exercise 10.4. Run my implementation of the boid algorithm and experiment with different pa-
rameters. What happens if you “turn off” one of the behaviors by setting the weight to 0?

To generate more bird-like behavior, Flake suggests adding a fourth behavior to maintain a clear line
of sight; in other words, if there is another bird directly ahead, the boid should move away laterally.
What effect do you expect this rule to have on the behavior of the flock? Implement it and see.

10.5 Prisoner’s Dilemma

The Prisoner’s Dilemma is a topic of study in game theory, but it’s not the fun kind of
game. Instead, it is the kind of game that sheds light on human motivation and behavior.
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Here is the presentation of the dilemma from http://en.wikipedia.org/wiki/Prisoner'

s_dilemma.

Two suspects [Alice and Bob] are arrested by the police. The police have in-
sufficient evidence for a conviction, and, having separated the prisoners, visit
each of them to offer the same deal. If one testifies against the other (defects)
and the other remains silent (cooperates), the defector goes free and the silent
accomplice receives the full one-year sentence. If both remain silent, both pris-
oners are sentenced to only one month in jail for a minor charge. If each betrays
the other, each receives a three-month sentence. Each prisoner must choose to
betray the other or to remain silent. Each one is assured that the other would
not know about the betrayal before the end of the investigation. How should
the prisoners act?

Notice that in this context, “cooperate” means to keep silent, not to cooperate with police.

It is tempting to say that the players should cooperate with each other, since they would
both be better off. But neither player knows what the other will do. Looking at it from
Bob’s point of view:

• If Alice remains silent, Bob is better off defecting.

• If Alice defects, Bob is better off defecting.

Either way, Bob is better off defecting. And from her point of view, Alice reaches the same
conclusion. So if both players do the math, and no other factors come into play, we expect
them to defect and be worse off for it.

This result is saddening because it is an example of how good intentions can lead to bad
outcomes, and, unfortunately, it applies to other scenarios in real life, not just hypothetical
prisoners.

But in real scenarios, the game is often iterated; that is, the same players face each other
over and over, so they have the opportunity to learn, react, and communicate, at least
implicitly.

The iterated version of the game is not as easy to analyze; it is not obvious what the optimal
strategy is or even whether one exists.

So in the late 1970s Robert Axelrod organized a tournament to compare strategies. He
invited participants to submit strategies in the form of computer programs, then played
the programs against each other and kept score.

I won’t tell you the outcome, and if you don’t know you should resist the temptation to
look it up. Instead, I encourage you to run your own tournament. I’ll provide the referee;
you provide the players.
Exercise 10.5. Download thinkcomplex. com/ Referee. py , which runs the tournament, and
thinkcomplex. com/ PlayerFlipper. py , which implements a simple player strategy.

Here is the code from PlayerFlipper.py:
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def move(history):

mine, theirs = history

if len(mine) % 2 == 0:

return 'C'

else:

return 'D'

Any file that matches the pattern Player*.py is recognized as a player. The file should contain a
definition for move, which takes the history of the match so far and returns a string: 'D' for defect
and 'C' for cooperate.

history is a pair of lists: the first list contains the player’s previous responses in order; the second
contains the opponent’s responses.

PlayerFlipper checks whether the number of previous rounds is even or odd and returns 'C' or
'D' respectively.

Write a move function in a file like PlayerFlipper.py, but replace “Flipper” with a name that
summarizes your strategy.

Run Referee.py and see how your strategy does.

After you run your own tournament, you can read about the results of Axelrod’s tournament in his
book, The Evolution of Cooperation.

10.6 Emergence

The examples in this chapter have something in common: emergence. An emergent prop-
erty is a characteristic of a system that results from the interaction of its components, not
from their properties.

To clarify what emergence is, it helps to consider what it isn’t. For example, a brick wall is
hard because bricks and mortar are hard, so that’s not an emergent property. As another
example, some rigid structures are built from flexible components, so that seems like a
kind of emergence. But it is at best a weak kind, because structural properties follow from
well-understood laws of mechanics.

Emergent properties are surprising: it is hard to predict the behavior of the system even if
we know all the rules. That difficulty is not an accident; it may be the defining characteristic
of emergence.

As Wolfram discusses in A New Kind of Science, conventional science is based on the axiom
that if you know the rules that govern a system, you can predict its behavior. What we call
“laws” are often computational shortcuts that allow us to predict the outcome of a system
without building or observing it.

But many cellular automata are computationally irreducible, which means that there are
no shortcuts. The only way to get the outcome is to implement the system.

The same may be true of complex systems in general. For physical systems with more than
a few components, there is usually no model that yields an analytic solution. Numerical
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methods provide a kind of computational shortcut, but there is still a qualitative difference.
Analytic solutions often provide a constant-time algorithm for prediction; that is, the run
time of the computation does not depend on t, the time scale of prediction. But numerical
methods, simulation, analog computation, and similar methods take time proportional to
t. And for many systems, there is a bound on t beyond which we can’t compute reliable
predictions at all.

These observations suggest that emergent properties are fundamentally unpredictable, and
that for complex systems we should not expect to find natural laws in the form of compu-
tational shortcuts.

To some people, “emergence” is another name for ignorance; by this reckoning, a property
is emergent if we don’t have a reductionist explanation for it, but if we come to understand
it better in the future, it would no longer be emergent.

The status of emergent properties is a topic of debate, so it is appropriate to be skeptical.
When we see an apparently emergent property, we should not assume that there can never
be a reductionist explanation. But neither should we assume that there has to be one. The
examples in this book and the principle of computational equivalence give good reasons
to believe that at least some emergent properties can never be “explained” by a classical
reductionist model.

You can read more about emergence at http://en.wikipedia.org/wiki/Emergence.

10.7 Free will

Many complex systems have properties, as a whole, that their components do not:

• The Rule 30 cellular automaton is deterministic, and the rules that govern its evolu-
tion are completely known. Nevertheless, it generates a sequence that is statistically
indistiguishable from random.

• The agents in Schelling’s model are not racist, but the outcome of their interactions is
as if they were.

• Traffic jams move backward even though the cars in them are moving forward.

• The behavior of flocks and herds emerges from local interactions between their mem-
bers.

• As Axelrod says about the iterated prisoner’s dilemma: “The emergence of coopera-
tion can be explained as a consequence of individual[s] pursuing their own interests.”

These examples suggest an approach to several old and challenging questions, including
the problems of consciousness and free will.

Free will is the ability to make choices, but if our bodies and brains are governed by deter-
ministic physical laws, our actions would be determined. Arguments about free will are
innumerable; I will only mention two:
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• William James proposed a two-stage model in which possible actions are generated
by a random process and then selected by a deterministic process. In that case our
actions are fundamentally unpredictable because the process that generates them in-
cludes a random element.

• David Hume suggested that our perception of making choices is an illusion; in that
case, our actions are deterministic because the system that produces them is deter-
ministic.

These arguments reconcile the conflict in opposite ways, but they agree that there is a
conflict: the system cannot have free will if the parts are deterministic.

The complex systems in this book suggest the alternative that free will, at the level of op-
tions and decisions, is compatible with determinism at the level of neurons (or some lower
level). In the same way that a traffic jam moves backward while the cars move forward, a
person can have free will even though neurons don’t.
Exercise 10.6. Read more about free will at http: // en. wikipedia. org/ wiki/ Free_ will .
The view that free will is compatible with determinism is called compatibilism. One of the
strongest challenges to compatibilism is the “consequence argument.” What is the consequence
argument? What response can you give to the consequence argument based on what you have read
in this book?
Exercise 10.7. In the philosophy of mind, Strong AI is the position that an appropriately-
programmed computer could have a mind in the same sense that humans have minds.

John Searle presented a thought experiment called “The Chinese Room,” intended to show that
Strong AI is false. You can read about it at http: // en. wikipedia. org/ wiki/ Chinese_
room .

What is the system reply to the Chinese Room argument? How does what you have learned about
complexity science influence your reaction to the system response?

You have reached the end of the book. Congratulations! When you first read Chapter 1,
some of the topics might not have made sense. You might find it helpful to read that
chapter again now. Then get to work on your case study! See Appendix A.
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Chapter 11

Case study: Sugarscape

Dan Kearney, Natalie Mattison and Theo Thompson

11.1 The Original Sugarscape

Sugarscape is an agent-based model developed by Joshua M. Epstein and Robert Axtell
to investigate the economics of wealth distribution. They presented the original model in
their book, Growing Artificial Societies.

The sugarscape is a virtual 2D grid where each cell has a certain amount of abstract wealth,
called sugar. Agents roam the grid and accumulate sugar.

In the simplest Sugarscape, each agent has a sugar reserve, a metabolism at which rate
it consumes its sugar, and a range of nearby cells that it can observe. At each time step,
the agent observes its nearby cells and moves to the cell with the most sugar. These rules
can be expanded to include topics as varied as reproduction, death, disease, loans, and
warfare. For example, a disease can be introduced to the system where a sick agent can
infect nearby healthy agents.

Despite its simplicity, the model generates outcomes that resemble the real world. When
modeling wealth with Sugarscape, a long-tailed distribution appears where some agents
are vastly richer than others. Similar behavior is seen in most real economies, where a small
part of the population holds a large fraction of the wealth. Extreme wealth inequality is
generally considered a problem, because it means there are many people barely surviving
while others are fabulously rich.

11.2 The Occupy movement

Wealth inequality has partly fueled a modern social movement known as the Occupy
movement. The first significant Occupy protest was on Wall Street in New York City, where
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thousands of protesters gathered to express their dismay with the distribution of wealth,
among other things. The movement’s motto is “We are the 99%”, reminding politicians to
serve the majority, not the 1% who control more than a third of the nation’s wealth. A major
goal of the movement is to achieve a more equal distribution of income, which protesters
hope to accomplish by implementing a more progressive tax policy.

One of the effects of taxation is to redistribute wealth from the rich to the poor. But oppo-
nents of the Occupy movement (and many fiscal conservatives) claim that high tax rates for
the rich actually hurt the population as a whole. The logic is that wealthy people employ
the poor, redistributing the wealth without the need for tax levies.

11.3 A New Take on Sugarscape

Our implementation of Sugarscape aims to study the effect of taxation on the wealth of a
society. We want to show how extreme under- or over-taxation can affect the society and
its individual agents, and what happens in between these two extremes. The model tests a
“flat tax” system where every agent gets taxed a constant rate (say 10% of its total wealth)
and the tax pool is redistributed evenly among all the agents. We recreate the original
Sugarscape and expand on it with the end goal of determining whether it is possible to
shrink the wealth gap without crippling the society.

11.3.1 Pygame

In the process of implementing Sugarscape, we made a GUI to better understand what was
happening on the grid. The visualization of the Sugarscape is done with Pygame, a set of
Python modules that allows easy graphic drawing. Pygame can blit images onto the screen
(see http://en.wikipedia.org/wiki/Bit_blit) and it has built-in methods for handling
user input like mouse clicks and button presses, making it ideal for designing games or
other programs that receive a lot of input.

Below is an abbreviated version of our event loop that draws the cells in the GUI at each
time step. Sugarscape.nextstep moves every agent forward by one time step and the rest
of the code redraws the update. Redrawing the entire grid is slightly less efficient than
changing existing rectangle objects but is a common convention for pygame. A square is
drawn for each location, and the color of the square changes based on the amount of sugar
contained there. Agents are represented by circles drawn on top of their current location.

def event_loop(self,sugarscape):

while True:

sugarscape.nextstep()

for i in range(sugarscape.length):

for j in range(sugarscape.width):

loc = sugarscape.get_location(i,j)

health_color = (0, 0, loc.get_sugar_amt()/loc.get_max_sugar())

pygame.draw.rect(self.window, healthColor,(12*i,12*j,10,10))

pygame.display.update()
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Users can control certain attributes of the Sugarscape by moving sliders underneath the
grid. A histogram, implemented using the matplotlib library, shows the current distribu-
tion of wealth, and text fields show certain characteristics of the distribution.

11.4 Taxation and the Leave Behind

Taxation in our implementation of Sugarscape is handled with a Government object. Every
ten time steps, the Government object collects a fraction of each agent’s sugar reserve,
then distributes the collected sugar to each agent equally. This transfer represents services
provided by the government as well as explicit redistribution of wealth.

But if opponents of the Occupy movement are correct, transferring wealth from rich to
poor makes society as a whole less productive. According to this theory, the rich create
more wealth than the poor because they can open factories, fund research, and generally
make investments into the economy.

In order to simulate this effect, we need to augment the model with a mechanism of wealth
creation. We implement a simple “leave behind” feature, where agents leave some sugar
behind as they leave a location:

leave_behind =
1
5

(
wealth× N
total_wealth

)1.1

where N is the total number of agents, wealth is the amount of sugar the agent has, and
total_wealth is the total sugar owned by all the agents. Agents who own a large proportion
of the total wealth leave behind larger amounts of sugar, making an investment into the
Sugarscape, and increasing the total wealth.

11.5 The Gini coefficient

To compare the effect of taxation on wealth distribution, we need a metric that measures
how distributed or flat a certain wealth distribution is. We use the Gini coefficient, which is
often used in economics to measure the wealth gap (see http://en.wikipedia.org/wiki/
Gini_coefficient). The Gini coefficient is between 0 and 1, with 0 the measurement of
a perfectly uniform distribution, and 1 the measurement of a distribution with complete
inequality.

Figure 11.1 shows a histogram describing the wealth distribution when there is no tax sys-
tem in place. For most initial conditions without taxation, the Sugarscape quickly develops
a long-tailed distribution of wealth, skewed to the right. In these cases, some agents die
quickly, particularly in an environment with many agents or one with low sugar regrowth
rate. The separation between the rich and the poor is significant, and there aren’t many
agents occupying the middle ground. This is seen in real life in societies where there is no
tax structure and there isn’t much of a middle class.
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Figure 11.1: Histogram of wealth with no tax.

11.6 Results With Taxation
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Figure 11.2: Histogram of wealth, with tax.

Figure 11.2 shows the effect of a relatively high tax rate. The agents have a similar amount
of sugar, and the economy has a low Gini coefficient, 0.02.

Figure 11.3 shows that higher taxes in general result in lower Gini coefficients. This makes
sense, since the point of our tax system is to redistribute wealth.

In this model, perfect equality comes at a price. With no taxation the mean wealth was 358;
with a 20% tax rate it drops to 157. Figure 11.4 shows the effect of tax rate on wealth; mean
wealth gets smaller as taxes get higher.
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Figure 11.3: The Gini coefficient versus the tax rate.
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Figure 11.4: Mean wealth versus tax rate.

11.7 Conclusion

It’s up to a society to determine its ideal wealth distribution. In our model, there is a conflict
between the goals of maximizing total wealth and minimizing inequality.

One way to reconcile this conflict is to maximize the wealth of the bottom quartile. Fig-
ure 11.5 shows the mean wealth of the poorest 25% for a range of tax rates. The optimal tax
rate is around 4%. At lower rates, there is more total wealth, but the poor do not share it.
At higher rates, the poor have a bigger share of a smaller pie.

Of course, this result depends on the details of our Sugarscape, especially the model of pro-
ductivity. But this simple model provides a way to explore relationships between wealth
creation, taxation and inequality.
Exercise 11.1. You can download our implementation of Sugarscape from thinkcomplex. com/

Sugarscape. zip . Launch it by running Gui.py. The sliders allow you to control the parameters
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Figure 11.5: Bottom quartile value versus tax rate. At 4% the average wealth of the bottom
quartile is maximized.

of the simulation. Experiment with these parameters to see what effect they have on the distribution
of wealth.



Chapter 12

Case study: Ant trails

Chloe Vilain and Andrew Pikler

12.1 Introduction

In nature, ants scavenge for food as a swarm. They choose their paths from the nest based
on pheromone density, favoring paths with higher concentrations of pheromone. Indi-
viduals lay pheromone trails upon finding food, allowing other members of their colony
to passively follow them to the food source. Because paths leading to food have higher
pheromone density, increasing numbers of ants choose these successful paths. As a result,
ant trails transition over time from random paths to streamlined routes. This organization
and appearance of patterns over time is an example of emergence, the process by which
complex systems and patterns arise from a multiplicity of simple systems.

Ant feeding patterns lend themselves to simulation with agent-based models, which sim-
ulate the actions and interactions of autonomous agents to assess their effects on the system
as a whole. When we model ant feeding patterns, each ant is an agent in the model, a self-
governing individual that makes decisions based on its surroundings. When simulating
large numbers of ants, behavior emerges that is reflective of ant behavior in the natural
world. Beyond being intrinsically fascinating, such models have applications in the “real
world” in areas ranging from city planning to film production.

12.2 Model Overview

We can see one example of an agent-based model in Deneuborg et al.’s 1989 paper The
Blind Leading the Blind: Modeling Chemically Mediated Army Ant Raid Patterns, available from
http://www.ulb.ac.be/sciences/use/publications/JLD/58.pdf.

The premise of the model is that as ants move around they deposit a pheromone, which
increases the likelihood that other ants will follow the same path. Ants that have found
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Figure 12.1: At each time step, ants move forward left or forward right.

food lay more pheromone than ants that haven’t, making it likely that other ants will follow
their paths to find more food.

The ants live in a two-dimensional world of discrete points arranged in a grid. At each
step of the model, each ant has a certain probability of moving to one of two neighboring
coordinates in the direction the ant is facing, away from the nest—forward left or forward
right (see Figure 12.1). All ants start in a corner of the world, which we call the nest; at each
time step of the simulation, we add more ants to the nest. This leads to a constant stream
of outgoing ants.

Once an ant has found food, it turns back towards the nest. It obeys the same rules for
motion—that is, in each time step, its choice to move either forward left or forward right
is influenced by the amounts of pheromone it sees, except now, these choices take it back
towards the nest. Also, after moving, the ant lays more pheromone than it did while forag-
ing for food. This significantly increases the probability that other foraging ants will follow
its path to find, potentially, more food.

In its starting configuration, each point in the world has a chance of containing food. Once
this starting condition has been set, we let the simulation run for about 1000 time steps,
and plot the result. You can see the plot of one such simulation in Figure 12.2, which is
similar to the actual foraging patterns Deneuborg et al. present in their Figure 1.
Exercise 12.1. Download the code for our simulation, from thinkcomplex. com/ ants. py . Run
it for 1000 time steps and see if your results look similar to Figure 12.2. The simulation can be
computationally intensive; 1000 time steps took almost two minutes on our computer, so be patient!

12.3 API design

Challenges of writing a simulation such as this include designing classes that are easy for
human readers of the code to understand, and implementing data structures that allow the
code to execute efficiently.

One way to break up a model into classes is to list the main nouns you use when describing
the model, and then represent the most prominent of those nouns as objects. In our model,
the primary objects are the World, which contains Ants, and Locations that represent points
in the grid.
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Figure 12.2: The simulation after 1000 time steps.

The next step is to decide what information about the current state of the model an instance
of each class is responsible for. In our case, the behavior of the World is defined by what
Ants and Locations can do, so it makes sense to design our classes bottom-up and consider
the World only once we have at least a tentative idea for the methods and attributes of Ants
and Locations.

For Ants, the most important information is where they are in the World, so each ant has
the attributes x and y to store its coordinates. Also, each Ant keeps track of whether or not
it is currently carrying food. Each Ant has only local information about the World; keeping
track of all the Ants is the job of the World object itself.

Ants provide two methods the World uses to interact with them:

• getPos: Returns the current coordinates of this Ant.

• move: Collects local information and moves the Ant accordingly.

Locations know even less than Ants; each Location only keeps track of the food and
pheromone it contains. Locations provide accessor methods that Ants and the World use
to modify the Location’s food and pheromone amounts.

Locations do not keep track of their coordinates on the map, because they never change. In-
stead, this information is represented implicitly by a dictionary that maps from coordinates
to Location objects.
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There is only one World object; this instance keeps track of all existing Ants and Loca-
tions. The World provides methods for controlling the state of the simulation: move_ants
advances the simulation by one time step by calling every existing Ant’s move method,
and evaporating a proportion of pheromone from each Location. Other methods include
add_ants, which adds a specified number of ants to the nest, place_food, which puts food
at each Location with some probability, and get_location, which looks up the Location at
given coordinates.

12.4 Sparse matrices

The group of Locations that make up our World is implemented as a sparse matrix. In
this representation, Locations don’t exist until they are needed; World.get_location is
responsible for fetching either the existing Location at the given coordinates, or creating a
new Location if it doesn’t exist.

An alternate implementation would be a dense matrix, either a Python list of lists or a
Numpy array. In our case, the sparse matrix has two advantages:

• Since most of the World is empty most of the time, it is more memory-efficient to only
keep track of those Locations that aren’t empty.

• A sparse matrix doesn’t have preset boundaries, so an Ant is free to wander off in any
direction. It would be more difficult to implement this feature with a dense matrix.

12.5 wx

We use the wx Python package to plot a picture of the ants after the simulation finishes
running.

We define a class called AntPlot which takes a World, creates a wx window, and plots the
ants (see in Figure 12.2):

class AntPlot:

def __init__(self, world):

self.world = world

self.app = wx.PySimpleApp()

self.w = 500

self.h = 500

self.frame = wx.Frame(None, -1, 'Ant Plot', size=(self.w, self.h))

self.canvas = FloatCanvas(self.frame, -1)

def draw(self):

positions = self.world.get_ant_dict()

for pos in positions:

x, y = pos

x -= self.w / 2
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y -= self.h / 2

self.canvas.AddPoint((x, y))

self.frame.Show()

self.app.MainLoop()

We use a wx FloatCanvas to plot the ants. Most canvases in GUI libraries define the point
(0, 0) as the upper left corner of the canvas and have x increase to the left and y increase
down, but the coordinates in the FloatCanvas work like in math—the origin is the middle,
and the positive y direction is up. This allows us to write simpler code because we don’t
have to transform our coordinates to the canvas’s system.

If you are interested in exploring wx further, AntPlot might be a good starting point.
Exercise 12.2. To understand the behavior of the model better, make some changes and see what
effect they have. For example, try altering the pheromone amounts in the model. What happens when
Ants deposit significantly more or less pheromone? What happens when Ants only lay pheromone
when leaving the nest? When returning?
Exercise 12.3. The distribution of food affects the structure of the trails. In ant.py, each Location
has a 50% probability of containing one particle of food. What happens when each Location has a
1% probability of containing 50 pieces of food?
Exercise 12.4. So far, we have modeled one nest of ants. What happens with multiple nests? Pick
a value d and modify the code such that Ants spawn at (0, d) and (d, 0) in addition to (0,0). Do the
trails of ants converge, or do they all remain distinct?

Keep track of the amount of food collected in each nest. Does one of the nests do better than the
others?

What happens when ants from one nest lay slightly higher amounts of pheromone than those from
the other nests?

12.6 Applications

Agent-based models have numerous applications, from modeling traffic patterns to cre-
ating realistic battle simulations. The entertainment industry uses agent-based models to
simulate crowds in films, games, and advertisements.

This kind of modeling is more scalable than filming; it is easier to simulate a large crowd
than to recruit a thousands of extras. Agent-based models make it feasible to create large-
scale, visually stunning sequences.

The Lord of the Rings trilogy is a salient example. Visual effects developers were tasked
with creating battles with hundreds of thousands of soldiers from a variety of races with
different fighting techniques. They implemented an agent-based model where each agent
had about 200 possible motions (animated using motion capture). Agents followed simple
rules to chose possible responses based on logic and probabilities. Different races—elves,
orcs and men—were based on the same “master agent” but had different weapons, abilities
and programmed attack responses.

Simulating thousands of agents in tandem allowed for exceptionally complex battle se-
quences. The results sometimes surprised even the programmers—in one simulation, a
number of agents fled the battle. They were not programmed to flee; that is, fleeing was
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not explicitly an option. Rather, this behavior emerged from the interaction of agents fol-
lowing simple rules. This unexpected action, which would be realistic in an actual battle
scenario, demonstrates the power of agent-based models.

The software developed for the trilogy, called Massive, has become the industry standard
for simulating large-scale battle sequences. Massive has since been used for battle se-
quences in movies like Chronicles of Narnia and 300, and for more benign crowd simulations
Happy Feet and Avatar.

The models used in these films are more complicated than our simulated ant trails, but
they are examples of the same concept. Like the agents in Lord of the Rings, our ants follow
simple rules, but their interactions yield realistic, complex, and sometimes unpredictable,
behavior.
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Case study: Directed graphs and
knots

Rachel Bobbins and Noam Rubin

13.1 Directed Graphs

Imagine that it’s 2 a.m. during finals week, and you’re scrambling to finish a research paper
on topica obscura. Your adrenaline jumps when you find a relevant Wikipedia article, with
links to more Wikipedia articles! You start clicking away, jumping from page to page in
search of facts. An hour later, you realize you’re still clicking, but these are pages you’ve
already visited. No matter which link you click, you can’t seem to discover any new pages!

If this has happened to you, you’ve unknowingly (and unfortunately) stumbled upon a
knot in Wikipedia. Knots are a unique property of directed graphs. To understand them, it
is necessary to have a basic understanding of directed graphs.

The graphs in the rest of this book are undirected. In an undirected graph, an edge repre-
sents a symmetric relationship between vertices. This abstraction is appropriate for some
applications, such as acquaintance networks and transportation networks; but other appli-
cations involve asymmetric relationships, for example, links between pages in the World
Wide Web.

Wikipedia links are also asymmetric. Page A might link to page B, but page B doesn’t have
to include any links to page A. To fully describe the relationship between pages A and B,
we need two bits of information: whether A links to B, and whether B links to A . This is
the essence of a directed graph. In a directed graph, a directed edge, e = (A, B), is an edge
from A to B.

Knots are a unique (and sometimes cruel) property of directed graphs. A knot is a col-
lection of vertices and edges with the property that every vertex in the knot has outgoing
edges, and all outgoing edges from vertices in the knot terminate at other vertices in the
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knot. Thus it is impossible to leave the knot while following any path along its directed
edges.

13.2 Implementation

In the scenario above, we imagine finding a knot in Wikipedia; that is, a set of articles with
links to each other, but no links to other articles.

We wondered whether such a thing was even possible. Given that there are 3,811,000+
articles on Wikipedia and they all link to different pages, it seemed unlikely that there
would be a knot, but we decided to investigate.

We started by extending Graph.py, from Section 2.2, to support directed graphs. The result
is DirectedGraph.py, which you can download from thinkcomplex.com/DirectedGraph.

py.

When we were designing DirectedGraph, we wanted to preserve the order of growth of
Vertex and Arc lookups as they were in Graph. However, we needed to keep track of edges
into a vertex and edges from a vertex. It made sense to keep track of these in separate
dictionaries. Having two dictionaries takes twice as much memory, but this is a reasonable
price to pay for maintaining the speed of lookups.

13.3 Detecting knots

To detect knots in a directed graph, we developed an algorithm based on a breadth-first-
search. _bfsknots searches for all the vertices that can be reached from a given starting
vertex, and returns these vertices as a set.

def _bfsknots(self, s):

# initialize the queue with the start vertex

queue = [s]

visited = set()

on_first_vertex = True

while queue:

# get the next vertex

v = queue.pop(0)

# skip it if it's already marked

if v in visited: continue

# if we're on the first vertex, we're not actually visting

if v != s or not on_first_vertex: visited.add(v)

on_first_vertex = False

for x in self.out_vertices(v):

#if its out vertices have been cached, update visited
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if x in self._knot_cache.keys():

visited.update(self._knot_cache[x])

visited.add(x)

#otherwise add it to the queue

elif x not in self._knot_cache.keys():

queue.append(x)

return visited

We run _bfsknots for every vertex in the graph, and build a dictionary that maps from
a vertex to the set of vertices it can reach. That is, for each vertex, V, we know the set of
reachable vertices, SV .

If there is a knot in the graph, then for every vertex, V, in the knot the reachable set SV is
exactly the set of vertices in the knot.

The function has_knot iterates through each vertex in a graph, and returns True if this
condition holds. If it checks the whole graph and does not find a knot, it returns False.

def has_knot(self):

"""

Returns true if directed graph has a knot.

"""

self._knot_cache = {}

#build the cache of which vertices are accessible from which

for v in self:

self._knot_cache[v] = self._bfsknots(v)

#searches for knot

for v in self:

if self._knot_at_v(v):

return True

return False

Finally, _knot_at_v checks whether all vertices reachable from V have the reachable set
SV .
Exercise 13.1. Download thinkcomplex. com/ DirectedGraph. py . Read through the file to
make yourself familiar with the terminology. Note that edges in DirectedGraph are represented by
Arcs.

Determine the order of growth of has_knots experimentally. You can follow the example in Sec-
tion 3.5. Below are some hints to help you out.

1. Use DirectedGraph.add_random_edges to generate graphs of different sizes.

2. For each graph, time how long it takes to check if it has a knot.

3. On a log-log scale, plot run time versus the number of vertices and run time versus the
number of edges.

Exercise 13.2. Find all the knots in a directed graph.
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1. Write a function, all_knots, that returns a list of all knots in a graph, where each knot is a
set of vertices.

2. Write a function named entry_points that returns a list of all the vertices that serve as
entry points into knots.

13.4 Knots in Wikipedia

To find knots in Wikipedia, we selected 558 disjoint subsets of Wikipedia articles, organized
by index. For example, the index of articles about neurobiology was used to define one
subset, and the index of articles about Zimbabwe was used to define another subset. The
558 subsets contain about 321,000 articles, or 10% of Wikipedia.

Of these subsets we examined, 38% contained at least one knot. So if you are restricted to
articles listed on a single index page, there is a substantial chance you will eventually find
a knot.

For the complete Wikipedia, the probability is lower because articles can link to articles in
other indices. Based on these results, we cannot say, yet, whether the complete Wikipedia
has a knot.

When you started your hypothetical research on topica obscura, you might have used jour-
nal articles instead of Wikipedia articles. Instead of links, you would have used citations
to find other papers.

In that case, you would never find a knot. Why not? Because science articles are published
sequentially, and a paper cannot cite a paper that will be created in the future. So the
directed graph that represents papers and their citations cannot have a knot.
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Case study: The Volunteer’s
Dilemma

Molly Grossman, Mandy Korpusik, and Philip Loh

14.1 The prairie dog’s dilemma
Suppose you are a prairie dog assigned to guard duty with other prairie dogs from your
town. When you see a predator coming, you have two choices: sound the alarm or remain
silent. If you sound the alarm, you help ensure the safety of the other prairie dogs, but you
also encourage the predator to come after you. For you, it is safer to remain silent, but if all
guards remain silent, everyone is less safe, including you. What should you do when you
see a predator?

This scenario is an example of the Volunteer’s Dilemma, a game similar to the Pris-
oner’s Dilemma discussed in Section 10.5. In the Prisoner’s Dilemma each player has
two options—cooperate and defect. In the Volunteer’s Dilemma each player also has two
options—volunteer (sound the alarm in our prairie dog example) or ignore (remain silent).
If one player volunteers then the other player is better off ignoring. But if both players
ignore, both pay a high cost.

In the Prisoner’s Dilemma, both players are better off if they both cooperate; however, since
neither knows what the other will do, each independently comes to the conclusion that he
or she should defect.

In the Volunteer’s Dilemma, it is not immediately clear what outcome is best for both play-
ers. Suppose the players are named Alice and Bob. If Alice volunteers, Bob is better off
ignoring; if Alice ignores, Bob is better off volunteering. This does not provide a clear best
strategy for Bob. By the same analysis, Alice reaches the same conclusion: if Bob volun-
teers, she is better off ignoring; and if Bob ignores, she is better off volunteering.

Instead of one optimal outcome, as in the Prisoner’s Dilemma, there are two equally good
outcomes: Bob volunteers and Alice ignores, or Bob ignores and Alice volunteers.
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In the prairie dog town, there are more than two guards. As in the scenario with just Alice
and Bob, only one player needs to volunteer to benefit the entire town. So there are as
many good outcomes as guards—in each case, one guard volunteers and the others ignore.

If one guard is always going to volunteer, though, then there is little point in having mul-
tiple guards. To make the situation more fair, we can allow the guards to distribute the
burden of volunteering among themselves by making decisions randomly. That is, each
guard chooses to ignore with some probability γ or to volunteer with probability 1− γ.
The optimal value for γ is that where each player volunteers as little as necessary to pro-
duce the common good.

14.2 Analysis

Marco Archetti investigates the optimal value of γ in his paper “The Volunteer’s Dilemma
and the Optimal Size of a Social Group.” This section replicates his analysis.

When each player volunteers with the optimal probability, the expected payoff of volun-
teering is the same as the expected payoff of ignoring. Were the payoff of volunteering
higher than the payoff of ignoring, the player would volunteer more often and ignore less;
the opposite is true were the payoff of ignoring higher than the payoff of volunteering.

The optimal probability depends on the costs and benefits of each option. In fact, the
optimal γ for two individuals is

γ2 = c/a

where c is the cost of volunteering, and a is the total cost if nobody volunteers. In the
prairie dog example, where the damage of nobody volunteering is high, γ2 is small.

If you transfer more prairie dogs to guard duty, there are more players to share the cost of
volunteering, so we expect the probability of each player ignoring should increase. Indeed,
Archetti shows:

γN = γ
1/(N−1)
2

γN increases with N, so as the number of players increases, each player volunteers less.

But, surprisingly, adding more guards does not make the town safer. If everyone volun-
teers at the optimal probability, the probability that everyone except you ignores is γN−1

N ,
which is γ2, so it doesn’t depend on N. If you also ignore with probability γN , the proba-
bility that everyone ignores is γ2γN , which increases with N.

This result is disheartening. We can ensure that the high-damage situation never occurs by
placing the entire burden of the common good on one individual who must volunteer
all the time. We could instead be more fair and distribute the burden of volunteering
among the players by asking each of them to volunteer some percentage of the time, but
the high-damage situation will occur more frequently as the number of players who share
the burden increases.
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Exercise 14.1. Read about the Bystander Effect at http: // en. wikipedia. org/ wiki/

Bystander_ effect . What explanation, if any, does the Volunteer’s Dilemma provide for the
Bystander Effect?
Exercise 14.2. Some colleges have an Honor Code that requires students to report instances of
cheating. If a student cheats on an exam, other students who witness the infraction face a version of
the volunteer’s dilemma. As a witness, you have two options: report the offender or ignore. If you
report, you help maintain the integrity of the Honor Code and the college’s culture of honesty and
integrity, but you incur costs, including strained relationships and emotional discomfort. If someone
else reports, you benefit without the stress and hassle. But if everyone ignores, the integrity of the
Honor Code is diminished, and if cheaters are not punished, other students might be more likely to
cheat.

Download and run thinkcomplex. com/ volunteersDilemma. py , which contains a basic im-
plementation of the Volunteer’s Dilemma. The code plots the likelihood that nobody will volunteer
with given values of c and a across a range of values for N. Edit this code to investigate the Honor
Code volunteer’s dilemma. How does the probability of nobody volunteering change as you modify
the cost of volunteering, the cost of nobody volunteering, and size of the population?

14.3 The Norms Game

At some colleges, cheating is commonplace and students seldom report cheaters. At other
colleges, cheating is rare and likely to be reported and punished. The explicit and implicit
rules about cheating, and reporting cheaters, are social norms.

Social norms influence the behavior of individuals: for example, you might be more likely
to cheat if you think it is common and seldom punished. But individuals also influence
social norms: if more people report cheaters, fewer people will cheat. We can extend the
analysis from the previous section to model these effects.

Our model is based on a genetic algorithm presented by Robert Axelrod in “Promoting
Norms: An Evolutionary Approach to Norms.” Genetic algorithms model the process
of natural evolution. We create a population of simulated individuals with different at-
tributes. The individuals interact in ways that test their fitness (by some definition of
“fitness”). Individuals with higher fitness are more likely to reproduce, so over time the
average fitness of the population increases.

In the cheating scenario, the relevant attributes are:

boldness : the likelihood that an individual cheats, and

vengefulness : the likelihood that an individual reports a cheater.

The players interact by playing two games, called “cheat-or-not” and “punish-or-not.” In
the first, each player decides whether to cheat, depending on the value of boldness. In the
second, each player decides whether to report a cheater, depending on vengefulness. These
subgames are played several times per generation so each player has several opportunities
to cheat and punish cheaters.

The fitness of each player depends on how they play the subgames. When a player cheats,
his fitness increases by reward points, but the fitness of others decreases by damage points.
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Figure 14.1: End conditions after 300 generations.

Each individual who reports a cheater loses cost fitness points and causes the cheater to
lose punishment fitness points.

At the end of each generation, individuals with the highest fitness levels have the most
children in the next generation. The properties of each individual in the new generation
are then mutated to maintain variation.

This code summarizes the structure of the simulation:

for generations in range(many):

for steps in range(repetitions):

for person in persons:

cheat_or_not()

punish_or_not()

genetic_repopulation()

genetic_mutation()

14.4 Results

Each run starts with a random population and runs for 300 generations. The parameters
of the simulation are reward = 3, damage = 1, cost = 2, punishment = 9. At the end, we
compute the mean boldness and vengefulness of the population. Figure 14.1 shows the
results; each dot represents one run of the simulation.

There are two clear clusters, one with low boldness and one with high boldness. When
boldness is low, the average vengefulness is spread out, which suggests that vengefulness
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Figure 14.2: Proportion of good outcomes, varying the cost of reporting cheaters and the
punishment for cheating.

does not matter very much. If few people cheat, opportunities to punish are rare and
the effect of vengefulness on fitness is small. When boldness is high, vengefulness is
consistently low.

In the low-boldness cluster, average fitness is higher, so individuals in the high-boldness
cluster would be better off if they could move. But if they make a unilateral move toward
higher boldness or higher vengefulness, their fitness suffers. So the high-boldness scenario
is stable, which is why this cluster exists.

14.5 Improving the chances

Suppose you are founding a new college and thinking about the academic culture you want
to create. You probably prefer an environment where cheating is rare. But our simulations
suggest that there are two stable outcomes, with low and high rates of cheating. What can
you do to improve the chances of reaching (and staying in) the low-cheating regime?

The parameters of the simulation affect the probability of the outcomes. In the previous
section, the parameters were reward = 3, damage = 1, cost = 2, punishment = 9. The
probability of reaching the low-cheating regime was about 50%. If you were founding a
new college, you might not like those odds.

The parameters that have the strongest effect on the outcome are cost, the cost of reporting a
cheater, and punishment, the cost of getting caught. Figure 14.2 shows how the proportion
of good outcomes depends on these parameters.
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There are two ways to increase the chances of a good outcome, decreasing cost or increasing
punishment. If we fix punishment = 9 and decrease cost to 1, the probability of a good
outcome is 80%. If we fix cost = 2, to achieve the same probability, we have to increase
punishment to 11.

Which option is more appealing depends on practical and cultural considerations. Of
course, we have to be careful not to take this model too seriously. It is a highly abstracted
model of complex human behavior. Nevertheless, it provides insight into the emergence
and stability of social norms.
Exercise 14.3. In this section we fixed reward and damage, and explored the effect of cost and
punishment. Download our code from thinkcomplex. com/ normsGame. py and run it to repli-
cate these results.

Then modify it to explore the effect of reward and damage. With the other parameters fixed, what
values of reward and damage give a 50% chance of reaching a good outcome? What about 70% and
90%?
Exercise 14.4. The games in this case study are based on work in Game Theory, which is a set of
mathematical methods for analyzing the behavior of agents who follow simple rules in response to
economic costs and benefits. You can read more about Game Theory at http: // en. wikipedia.
org/ wiki/ Game_ theory .
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Call for submissions

The case studies in this book were written by students at Olin College, and edited by Lisa
Downey and Allen Downey. They were reviewed by a program committee of faculty at
Olin College who chose the ones that met the criteria of interest and quality. I am grateful
to the program committee and the students.

I invite readers to submit additional case studies. Reports that meet the criteria will be
published in an online supplement to this book, and the best of them will be included in
future print editions.

The criteria are:

• The case study should be relevant to complexity. For an overview of possible topics,
see http://en.wikipedia.org/wiki/Complexity and http://en.wikipedia.org/

wiki/Complex_systems. Topics not already covered in the book are particularly wel-
come.

• A good case study might present a seminal paper, reimplement an important experi-
ment, discuss the results, and explain their context. Original research is not necessary,
and might not be appropriate for this format, but you could extend existing results.

• A good case study should invite the reader to participate by including exercises, ref-
erences to further reading, and topics for discussion.

• The case study should present enough technical detail that reader could implement
the model in a language like Python.

• If you use an algorithm or data structure that deserves comment, you should discuss
it. Topics not covered in the book, including tree algorithms and dynamic program-
ming, are particularly welcome.

• If you use a feature of Python or a module that you think will interest readers, you
should discuss it. But you should stick to modules that are in widespread use and
either included in Python distributions or easy to install.

For more details, see thinkcomplex.com/case_studies.
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Appendix B

Reading list

In my class we start the semester by reading popular books about complexity science. They
provide a pleasant way to get a big picture of the field and start to see connections between
topics.

One problem with these books is that they are written for a non-technical audience, so after
a while the students get frustrated by the vagueness and hand-waving. That’s what this
book is for.

The other problem is that students can’t read 30 books in a week, or even a semester. In-
stead, I provide one copy of each book and ask the students to pick one, read the first
chapter, write a summary, and post it on the class web page.

During the next class session, the students swap books. Each student reads the summary
written by the previous student, then reads the next chapter, and writes a summary.

After a few iterations, we have a class discussion where students report what they have
read so far and we look for connections. For example, one student might present a topic,
then another student suggests a related topic and explains the relationship. I draw the
topics and the relationships between them on the board (see http://en.wikipedia.org/

wiki/Concept_map).

We repeat this exercise until we have seen what there is to see, or we are impatient to get
down to business.

You can see the list of books, and read the summaries my students wrote, at https://
sites.google.com/site/compmodolin.

Here are the books:

• Axelrod, Complexity of Cooperation.

• Axelrod, The Evolution of Cooperation.

• Bak, How Nature Works.
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• Barabasi, Linked.

• Buchanan, Nexus.

• Epstein and Axtell, Growing Artificial Societies: Social Science from the Bottom Up.

• Fisher, The Perfect Swarm.

• Flake, The Computational Beauty of Nature.

• Goodwin, How the Leopard Changed Its Spots.

• Holland, Hidden Order.

• Johnson, Emergence.

• Kelly, Out of Control.

• Kluger, Simplexity.

• Levy, Artificial Life.

• Lewin, Complexity: Life at the Edge of Chaos.

• Mitchell, Complexity: A Guided Tour.

• Mitchell Waldrop: Complexity, the emerging science at the edge of order and chaos.

• Resnick, Turtles, Termites, and Traffic Jams.

• Rucker, The Lifebox, The Seashell, and the Soul.

• Sawyer, Social Emergence: Societies As Complex Systems.

• Schelling, Micromotives and Macrobehaviors.

• Schiff, Cellular Automata: A Discrete View of the World.

• Strogatz, Sync.

• Watts, Six Degrees.

• Wolfram, A New Kind Of Science.
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